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Artificial intelligence:
The Turing test ,

1912-1954

* Turing proposed that a computer program show intelligent
behavior if 1s able to fool a human interrogator

* The Turing test: the computer 1s interrogated by a human via a
teletype, and passes the test if the interrogator cannot tell if there
is a computer or a human at the other end

— natural language processing
— knowledge representation
— automated reasoning

— machine learning




Al techniques

Logics
Knowledge representation
Search

Machine learning

Pattern recognition
Automatic theorem proving
Planning

Machine vision

Natural language processing

“...making a machine behave in ways
that would be called intelligent if a

human were so behaving”

- John McCarthy, August 31, 1955

“The subfield of computer science
concerned with the concepts and
methods of symbolic inference by
computer and symbolic knowledge
representation for use in making
inferences.”

- The Free On-line Dictionary of
Computing (September 27, 2003)



Machine learning

Supervised learning; used to learn a model from a set of
examples with predefined classes (training set)

Unsupervised learning (clustering, class discovery); used to
“discover” natural groups observations



Genes/metabolites/proteins

Conditions/tissues/time

\ 4

0.54 0.53 0.16 0.14 0.20 -0.34 -0.38
-0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03
0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29
0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18
-0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56
0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23
0.54 0.53 0.16 0.14 0.20 -0.34 -0.38
0.20 0.14 0.00 0.11 -0.34 -0.03 0.04
0.40 0.43 0.18 0.00 -0.14 0.29 0.07
0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45

\L -0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97

Time series versus
Feature space

-0.36
-1.84
-0.29
-0.38
-1.09
-0.58
-0.36
-0.76
-0.79
-0.64

-2.06

Condition A

Condition B
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Unsupervised learning: Looking into more than 3D:
Hierarchical clustering and principle component analysis (PCA)
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19 melanomas of all 31 cutaneous

melanoma samples (Bitter et al. Nature.

406: 536, 2000)



Supervised learning: Training examples

M < 100

Gene/lExpr E1 E2 E3 E4 E5 E6 E7 E8 E9 EI10 ... EM
Gl -0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60 ... -0.94 |
G2 0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45 ... -0.42
G3 0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81 ... -1.12
G4 -0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76 ... -0.62 =
G5 0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29 ... -0.74
G6 0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58 ... -1.47
G7 0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12 ... -1.36 |
G8 0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92 ... -1.22
G9 0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22 ... -1.09 |

GN ‘-0.23 0.04 0.00 -0.30 -0.29’ |-0.45 -0.97 -2.06 -0.89 -1.22 ... -0.97'__
! |

N > 10000 WT Transgenic

Transcripton Cell growth



Machine learning

* Supervised methods
— Bayes decision rule
— Nearest neighbor approaches
— Decision tree learning/rule-based learning
— Linear/non-linear classifiers
— Neural networks

— Genetic algorithms/programming

* Concepts
— Classification versus regression
— Curse of dimensionality

— Opverfitting
— Validation



Example: Decision tree learning

Social Subnatioral, Christian
Countey Communists | Scocialists | Greens | Democrats | Liberals | Agrarians regicnal and Democrats | Consarvatives | Extreme Right
ethnic partias
MNorway a 7 a 38 4 a =] 24 &
Swadan B 9] 2 43 1Q 17 9] 2 15 1
Denmark 4 =] a 33 13 14 a 3 15 9
Finland 15 a 2 24 3 25 5 3 21 a
lceland a 18 3 16 4 2 a a 36 a
UK a a =] 39 15 4 a 42 a
Nether lands Z 5 0 30 23 0 0 75N\ 0 0
Belgi urm 2 a £ 27 19 9] 14 31 a 2
Luxembourg A 1 3 31 21 g ] 34 ] 1
Switzerland 2 2 7 22 23 ( 11 ) a =z 3 5
Austria 1 Q 2 45 0 — Q 41 Q 5
Gearmany 1 a 3 40 ] W] a Nied a 1
France 15 2 2 25 20 9] a é 25 5
Ttaly 75 g 3 15 El g 3 U3 ) z 3
Graace 14 a a 39 &} 9] a - 44 a
Spain 8 a a 39 16 9] 14 a 2 1 a
Portugal 15 a 1 31 38 Qa a 1 a

Class knowledge:

Group 1: Nordic countries

Group 2: UK, France, Greece, Spain,
Portugal
Group 3: Benelux countries,
Switzerland, Austria, Italy, Germany

Christian Democrats > 16

Group 3

Group 1

Agrarians > 4

Group 2



Machine learning terminology

Some concepts:

1. Data: Observations collected from the real world (e.g. the voting pattern
in Sweden). Observations consist of a number of features (e.g.
communist votes)

2. Examples: Observations labeled with class information (e.g. Sweden
belong to group 1).

3. Model: A general representation of the data (e.g. the decision tree)

Models are induced!

1. Induction: Using specific information/data to arrive at general
knowledge (e.g. from examples to a decision tree).

2. Deduction: Using general knowledge to say something about a specific
case (e.g. using a decision tree to predict the group of a new country).

Models can be predictive and/or descriptive.
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Bayes decision rule



Prior Probability

w - classes, e.g.

— w, the object 1s a fish, w, the object is a bird, etc.

A priori probability (or prior) P(w)

Class-conditional probability

Given class information (training data), we observe x; e.g.
— The objects has wings
— The object has eyes

Class-conditional probability p(x| »)



Bayes decision rule

Suppose the ptiors P(») and conditional densities p(x|») ate
known

likelihood prior
\ /

P(a)j X) = p(xle)P(a)j)

(X)
/ : ™~

posterior evidence

Bayes decision rule:

P(w,|x) > P(w,|x) then choose w,, else choose w.,.



Example

pdf
P(color|peach) 4 P(peach|color) P(apple|color)

P(color|apple) —> /

» color » color

* Bayes Decision Rule

— If P(apple | color) > P(peach | color) then choose apple

* Note that the evidence p(color) is only necessary for normalization
purposes; it does not affect the decision rule



So, what about the data?

* Use the examples to estimate the probability distributions (training
data) : 1000.00

— P(wj) is easy. s00.00 4

—  p(x|»): Histogram! i _

GO0, 00
400.00 4

200,00

0.00 T
3735 97.22 157.09 2169 27483

* One feature: bins are rectangles, Two features: cubes, #-features:

hyper-cubes.
* More dimentions/features require more training data: Curse of
dimensionality!

— If we need 10 observations when we have one feature (to get a good
histogram), then we need 10” observations when we have 7-features!

e If the true probability distributions are known, then Bayes decision
rule is optimal (minimizes error rate).



Gene/Expr
Gl
G2
G3
G4
G5
G6
G7
G8
G9

GN

N = 10000

Training examples

M < 100

El E2 E3 E4 ES5 E6 E7 E8 E9 EIO ... EM
-0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60 ... -0.94
0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45 ... -0.42
0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81 ... -1.12
-0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76 ... -0.62
0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29 ... -0.74
0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58 ... -1.47
0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12 ... -1.36
0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92 ... -1.22
0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22 ... -1.09
-0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06 -0.89 -1.22 ... -0.97

Y J \ v )
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Feature selection

Feature selection 1s used to deal with the curse of
dimensionality

— Ranking methods: compute a statistics (of the features discriminatory
capability), rank the features and select the most discriminating ones

— Wrapper methods: select a subset of features, induce and validate the
resulting model and repeat. Computationally expensive!

— Dimensionality reduction: map your features into a smaller features

space (e.g. PCA)



(Resection) «

~

Bayesian networks

Normal
transitional cell
epithelium

"Atypical”
hyperplasia

-~
(2 Implantation)
~

Resection) = -~
-
4
/
/

~

1
1
1
]
\
\
\
\

\
2 Implu\nfuﬁon)

-
- -

Y
~

-
-
-

(2 distant dissemination)
A Y

~
~
~
S
~

(2 Implunlufiun]
~

~

~

[Vascular permeation)

-

~
\\
4

[Dysplasia)

Carcinoma in situ

Papillary carcinoma

[Hyperplasia)

non-invasive, low grade
~

T
(Dysplasia)
A

Y

.
[Hyperplasia)
/
4
4

(Invasion)

Papillary carcinoma
non-invasive, high grade

Invi

asive carcinoma

(solid)

(Invasion)

Invasive carci
|papillary)

(lymphatic per

(Llymphatic permeation)

(Vascular permeation)

~

Distant
metastases

Regional (lymphatic)
metastases

Distant
metastases

Gene: N
Gene: G Gene: P Gene: K
\ Q
\
Gene: B
Y )/
Gene: A
Gene: H Gene: F
Gene: O

ety
D



Nearest neigbour approaches



k-nearest neigboor

The simplest of all machine learning
algorithms.

Each observation is a point in the 7-
dimensional space spanned by the A
features. ." :

An observation is assigned to the class
most common amongst its £ nearest
neighbors. =

”Nearest” can be defined differently:
Euclidean distance, correlation, etc.

Lazy learning where the function is
only approximated locally and all
computation is delayed until
classification.



Decision tree learning
(rule-based learning)



Example: Cricket game

* Umpires’ decision to play a cricket match

— Data on three factors thought to influence the decision

Weather Light Ground condition | Umpires’
decision
Sunny Good Dry Play
Overcast Good Dry Play
Raining Good Dry No play
Overcast Poor Dry No play
Overcast Poor Damp No play
Raining Poor Damp No play
Overcast Good Damp Play
Sunny Poor Dry Play

* Task: determine the rules the umpires are
explicitly or implicitly using



Decision tree algorithm

Aim: split the data so that each resulting subset belongs
to one class

Algorithm summary:

1. For each feature, compute the goodness of the split

2. Select the best feature and split the data according to the
values in that feature

3. If each of the subsets contains only one class, then stop.
Otherwise reapply 1-3 on each of the subsets

4. If the data 1s not completely classified, but there are no more
splits available, then stop



Example split: Cricket game

Need to divide the set of training examples into two
smaller sets: ‘Play’ and ‘No play’

Light = Good yields four examples:

Sunny Good Dry Play
Overcast Good Dry Play
Raining Good Dry No play
Overcast Good Damp Play

Lght = Pooryields four examples:

Overcast Poor Dry No play
Overcast Poor Damp No play
Raining Poor Damp No play
Sunny Poor Dry Play




Cricket game

Final decision tree:

Overcast

Interpretation:

IF weather = sunny THEN play

IF weather = raining THEN no play
IF weather = overcast AND light = good THEN play
IF weather = overcast AND light = poor THEN no play



Overfitting

Opverfitting: The method learns the random patterns in the data as
well as the underlying process that created the data

— Occurs because the alg. tries to reduce the classification error

To identify this phenomenon:
— Split data into training data (*75%) and test data (=25%)

— Build tree on the training data and test the model on the
test data

A decision tree X is overfitted if there exists a tree Y that do
better on an unseen test set, but worse on the training set

“Solution”: Prune complex branches of the tree



Occam’s razor

o William of Occam 14% century: things should not be
mnltiplied unnecessarily

* Issac Newton (1687): we are to admit no more causes of

natural things than such as are both true and sufficient to explain
their appearance

* Albert Einstein (20% centuty): everything should be made as simple as
possible, but not simpler

The simplest model that explains the data should be chosen



Decision trees: greedy algorithm

* Decision trees are built by iteratively splitting the
training examples using the “best” feature: greedy

* Would benefit from some search strategy

— A split could be evaluated in terms of its current ability to
classify the data AND the accuracy of the splits later on in the
algorithm run



Decision tree and motifs learned for ABA-responsive
genes in Arabidopsis

Pipeline for protein structure prediction and
function annotation
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Model validation



Method power

You want to find homologous proteins to a specific protein A
using some computational method X:

TP/(TP+FN)
Specificity: TN/(TN+FP)

All proteins in the database

Predicted by X to be
homologdus to A

TN

Homologous to A



Evaluation

Classifications can be
— True positives (TP)
— False negatives (FN)
— True negatives (TN)
— False posttives (FP)
Evaluation measures:

— accuracy = (TP+TN)/(TP+FN+TN+FP)

— sensitivity = TP/(TP+FN)
— specificity = TN/(TN+FP)
Confusion matrix:

Predicted
Class 0 | Class 1
o
o TN | FP
® | O
=
& -—
o FN | TP
O




Cross validation

lteration 1 [teration 2 [teration 3

Observation 1
Observation 2

Fold 1

Fold 2

Fold 3

Observation n

e /A-fold cross validation: £ iterations

e J.eave-one out cross validation: 7 iterations



Threshold selection

Certainty in

@ Gene with function “protein biosynthesis” sensitivity:
. : : TP/(TP+FN)
® Gene with a different function specificity:
TN/(IN+FP)
! @)
Rw @)
2 °
< % 0.. .............. Threshold 1
2 E
O @
S5 o
@
—

g1 % % 4 & L & % % Lo S i Lestset
Sensitivity = 2/3, Specificity=1



ROC analysis and classifier evaluation

Perfect discrimination  ROC: Receiver operating
V characteristics curve results from
1 " plotting sensitivity against
specificity for all possible
thresholds
— sensitivity: TP/(TP+FN)

{E‘ _ specificity: TN/ (TN+FP)
5
a * AUC: Area under the ROC curve
3
No discrimination
0

v

0 1 — specificity 1
False alarm



sensitivity

ROC analysis and classifier
evaluation

Perfect discrimination

No discrimination

Which ROC curve is better?

A dominants B and C and clearly
has a higher AUC

B and C have approximately the
same AUC

B is better for some thresholds,
C for others

1 - specificity

v



Artificial neural networks
(linear versus non-linear methods)



Linear versus non-linear classifiers

* Linear: Finds a hyperplane that . :'.
separates the classes °, o e
— In two dimensions: w, +w,x, + w,x, o
— Use the examples x to estimate w © 0%l
o Op

e Non-linear:

— Support vector machines uses the = Masimun magin

. separating “hyperplang
kernel trick: The kernel maps the '
observations into a higher dimensional
space where the problem is linearly
separable

— Artifical neural networks

Support vectors




Number of cells

SiRNA classification
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Artifical neural networks

Inspired by how the brain works — a mathematical model for
the operation of the brain

An ANN is a number of nodes (units) connected by links.
Fach link 1s associated with a numerical weight.
— Training set: (x,, fxx))), (55 f5))s wey (2, fx))

— Learning in an ANN is reduced to the process of using the training
data to tune the weights so that the network represents the function f



Network structure

e Feed-forward network: all units are connected to all units in the next
layer

— One (sufficiently large) hidden layer can represent any continuous function

— More hidden layers can even represent discontinuous functions

Output units 0)

W

bt

Hidden units a;

-~

S ddh
LB

Wej

Input units L

¢ Recurrent network: feed back loops, internal states (memory):

— E.g. The brain is clearly a recurrent network



Input

—

Output

al
;/

(X

Input Activation
Function Function

Output

Links

Input function: linear component, 7z, that compute the

weighted sum of the units input values

in,=> W, -a,
j

Activation function: nonlinear transformation, g, of the

input function into the unit’s activation value

a = g(ini)



Activation functions

Aa,- ?af ‘a;‘

+1 g +1 r—

(a) Step function (b) Sign function (c) Sigmoid function

Three different activation functions for units.

1, #x > . +1, ifx>0 . i 1
o ? — . = 2 = d =
Step () = { 0, ifx<t sign(x) { 1, Fx<0 Sigmoiin) | +e—*

Typically, the threshold of the activation function is embedded in the input
function:

a; =step,(D_W,;-a;) =step,(Q_W,;-a;),whereW, , =tand a, =-1
=1 j=0




Boolean functions

* Units can represent the basic logical gates

* 'Thus, units can build networks that can represent any
Boolean function

AND OR NOT



Optimal network structures

Too small network: the network will be incapable of representing the
desired function

Too large network: the network can memorize all the examples by
forming a lookup table

— Opverfitting!

To 1dentify this phenomenon:
— Use training/test sets

— Choose the simples model that explains the datal Occam’s razor

Finding the optimal network structure is itself a search problem

— Potentially time-consuming since every state in this search involves training
and evaluating a neural network of a particular size



Perceptrons

* DPerceptrons: single-layer, feed-forward networks

— Majority function: outputs 1 if a majority of the 7 inputs are 1 (would
require a decision tree with O(2”) nodes)

* A perceptron can only represent a function if there is a line that
separates all the white dots (0s) from the black dots (1s), i.e.

functions that are linearly separable ; ° N 00
nput utput
Url?its Unitp
% Single Perceptron
I 1 I Vi 1 [
$ 1 A
I ® L] ® 1* O
5
00——0— 00— @ u 00——@—»
0 1 L 0 1 0 1 L
a .
(@ I, and [, (b) I, or I, () I, xor I,



Learning linearly separable functions

Only one unit: O =Step, (D W)
J

Err = T — O, where T 1s the correct output
Perceptron learning rule: W, < W, +axI;xErr

— o is called the learning rate

Learning algorithm:
— Initiate weights, e.g. random values between 0 and 1

— For each example
¢ Compute O
* Update weights with the learning rule

— Repeat until all examples are correctly predicted
Epoch: updating all weights for every example

Note: the perceptron rule is guaranteed to learn a linearly
separable function given enough examples!



% correct on test set

0.9
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Perceptrons versus decision trees: Example
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el Perceptron ——
; Decision tree
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Training set size
Attributes Goal
Example
Alt | Bar | Fri | Hun| Pat | Price| Rain| Res Type Est WillWait
Xi Yes | No| No | Yes| Some| $$$ | No | Yes | French | 0-10 Yes
X Yes | No | No | Yes | Full $ No | No Thai 30-60 No
X3 No | Yes | No | No | Some 3 No | No | Burger| 0-10 Yes
X4 Yes | No | Yes | Yes |  Full 3 No | No Thai 10-30 Yes
Xs Yes | No | Yes| Ne Full | $%$ | No | Yes | French >60 No
Xe No | Yes| No | Yes| Some | $$ | Yes | Yes | Italian 0-10 Yes
X7 No | Yes | No | No | None $ Yes | No | Burger | 0-10 No
Xs Nol| Nol| No| Yes| Some| $$ | Yes | Yes Thai 0-10 Yes
Xy No | Yes | Yes | No Full 3 Yes | No | Burger | >60 No
X Yes | Yes | Yes| Yes| Full | $8% | No | Yes | ltalian 10-30 No
Xn No | No| No | No | None $ No | No Thai 0-10 No
Xiz Yes | Yes| Yes | Yes | Full 3 No | No | Burger | 30-60 Yes




ANN discussion

Very insensitive to noise

ANNs are basically black box approach — unlike
decision trees they do not provide a clue to how a
prediction is made

Diftticult to incorporate prior biological knowledge

Can also be used for clustering (unsupervised learning):
self-organizing maps



Image recognition

ANN
A
s ™
Input layer Hidden layer Qutput layer
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Genetic algorithms and programming



Genetic algorithms

* Idea: use principles of evolution to discover better
solutions to a problem given a random starting set of
solutions

* Operators act on individuals (solutions) in the
population (set of solutions) to yield a set of new
solutions (next generation)

— Reproduction
— Selection
— Crossover

— Mutation

* Iteratively apply the operators to the population moving
the algorithm from one generation to the next



Operators
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Algorithm

Generate a starting population randomly

Select two individuals from the current population
randomly according to their fitness.

Combine the selected individuals using crossovers to
form two new individuals

Mutate the two new individuals
Place the new indivudals in the next generation
Repeat 2-5 until the next generation 1s filled

Repeat 2-6 until no improvment is observed



Learn gene networks using GA

* Encode an individual as a matrix of gene interactions

* Fitness relates to how well the network describes microarray data
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Genetic programming

One of the most recent techniques in Al
Closely related to GA
Solution 1s represented by a parse tree

Originally designed for ‘automatic programming’

— Method for computers programming themselves

The programs they derive can be used to represent a range of
functions which are based on the tree representation

— E.g. adecision tree



Tree representation

Parents

e Terminals

e Variables in a computer program

e Constants

* Operators
* Perform operations on terminals
* Binary operators (+,-,%,...) v

« Unary operators (log10, exp, sqrt, ...) |
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Application

* Machine learning:

—  Each tree is a decision tree or rule

—  Fitness is the classification accuracy of the tree

—  Examples: used in drug discovery and functional genomics
* Learning computer programs

—  Fitness 1s to what degree the program can be ran on a
computer and produce the desired output

Limitations of GA and GP

* The problem most lend iteself to a genetic
representation

e All solutions should be valid



SAGA: Sequence Alignment by
Genetic Algorithm
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Final remarks



Tools

R Machine Learning:

http:/ /cran.r-project.org/web/views/MachineLearning.html
mloss: Machine Learning Open Source Software
http://mloss.org/about/

RapidMiner:

http:/ /rapid-i.com/content/view/181/190/



Summary

Machine learning allows models with predictive and
descriptive capabilities to be induced from examples

HEvaluation: training set, test set, cross validation, ...

Ditferent approaches have different strengths and
weaknesses

— Linear versus non-linear

— Interpretable versus black box

— Regression versus classification



Summary

Overfitting: you select a model A over a model B when
A performs better on the training set, but worse on the
unseen test set

— Stop before overfitting occurs (e.g. before the decision tree is to
long or when the performance of the neural network no longer
improves)

— Occam’s razor: Select the simplest model that explains the data
(do not use non-linear methods on a linearly separable

problem)

Course of dimensionality
— Rule of thumb: You need more observations than features

— Use dimensionality reduction methods (e.g. PCA) or feature
selection (on the training set!)



