
1

Lecture 1: Introduction to
bioinformatics

Torgeir R. Hvidsten

Professor
Norwegian University of Life Sciences

Guest lecturer
Umeå Plant Science Centre

Computational Life Science Centre (CLiC)

2

Course information (I)

• 10 Lectures
• 7 computer labs
• Book: Introduction to Bioinformatics.

Arthur M. Lesk, Oxford University Press.

• Credit points: 4 ECTS

• To pass:
– attend lectures and labs
– send lab to: david.sundell@plantphys.umu.se

3

Computer labs, MA316

4

David Sundell

Course information (II)

• Course webpage:
– http://www.trhvidsten.com/complife/2012

• Here you can find the
– course program
– online resources

• and download
– lecture slides
– labs and suggestions for solutions to labs
– additional material/examples research articles

5

6

Course goals
At the end of this course you will :
• have basic knowledge of online bioinformatics resources

(databases, ontologies, etc)
• know how to write and debug basic Perl programs and use

online Perl libraries
• recognize the different algorithm design techniques and be able

to do basic time/space complexity analysis
• know how to apply, and interpret results from, classical

bioinformatics approaches such as pairwise and multiple
alignment, phylogenetic analysis, and machine learning

• have a basic understanding of approaches applied in structural
bioinformatics and systems biology

7

This lecture

• Introduction to bioinformatics
• Introduction to the topics of this course
• Introduction to programming:

– programming languages
– pseudo-code

8

DNA sequence comparison:
First success story of bioinformatics

• In 1984 Russell Doolittle and colleagues found
similarities between a cancer-causing gene and a
normal growth factor (PDGF) gene using a
database search

• Finding sequence similarities with genes of
known function is a common approach to predict
the function of a newly sequenced gene

• “Bioinformatics will disappear and become an
integrated part of biology” (Doolittle, 2002)

9

COMPUTER SCIENCE
STATISTICS

MATHEMATICS
BIOLOGY

Bioinformatics

10

Bioinformatics

Biologist using BLAST

Computer scientist working on
O(n∙log n) sequence alignment
algorithm

Bioinformaticians

Definitions

• Bioinformatics: Research, development, or application of
computational tools and approaches for expanding the use of
biological data, including those to acquire, store, organize,
archive, analyze, or visualize such data.

• Computational biology: The development and application of data-
analytical and theoretical methods, mathematical modeling and
computational simulation techniques to the study of biological
systems.

• System biology: the systematic study of complex interactions in
biological systems (integration/holism instead of reduction)

11

The book

• Introduction to Bioinformatics. Arthur M. Lesk,
Oxford University Press (2nd edition is online)

• Covers mostly basic bioinformatics (databases, online
resources)

• Some of the lectures will be more advanced and
towards computational biology/systems biology

12

Programming

• Lectures 2-4, Labs 1-3
• Do bioinformaticians

need to know how to
program?

• We will use the
programming language
Perl

13

Algorithm designs

• Lecture 5, Lab 4
• Types of search algorithms
• Time/space complexity

14

Sequence alignment as a search problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Deletion

Matches

Insertion

-TGCAT-A-C
AT-C-TGATC

v

w

15

Algorithm design (I)

• Exhaustive algorithms (brute force): examine every
possible alterative to find the solution

• Branch-and-bound algorithms: omit searching through
a large number of alternatives by branch-and-bound or
pruning

• Greedy algorithms: find the solution by always
choosing the currently ”best” alternative

• Dynamic programming: use the solution of the
subproblems of the original problem to construct the
solution

16

Algorithm design (II)

• Divide-and-conquer algorithms: splits the problem into
subproblems and solve the problems independently

• Randomized algorithms: finds the solution based on
randomized choices

• Machine learning: induce models based on previously
labeled observations (examples)

17

Time complexity
• Genome assembly: pice together a genome from short reads (~200bp)

– Aspen: 300M reads
– Spruce: 3000M reads

• Pair-wise all-against-all alignment for Aspen takes 3 weeks on 16 processors
• What about spruce?

Bioinformatician:
Spruce: 300 uker

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Ti
m
e
(w

ee
ks
=

Million reads

Biologist:
Spruce: 30 weeks

Time complexity: O(n2)

18

Tractable versus intractable problems

• Some problems requires polynomial time
– e.g. sorting a list of integers
– called tractable problems

• Some problems require exponential time
– e.g. listing every subset in a list
– called intractable problems

• Some problems lie in between
– e.g. the traveling salesman problem
– called NP-complete problems
– nobody have proved whether a polynomial time algorithm

exists for these problems

19

Traveling salesman problem

20

Sequence alignment

• Lecture 6, Labs 3 and 5
• Pair-wise alignment (BLAST)

• Multiple alignment (PSI-BLAST, HMMs, pFAM, etc.)

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQA--
LSLTCTVSG-SFDD--YYSTWVRQP--
PEVTCVVVD-SHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKD-FPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG-- 21

Evolutionary analysis, phylogenetic analysis

• Lecture 7, Lab 6

22

Phylogeny‐aware gap
placement

Conclusion:
“The resulting alignments may be fragmented
by many gaps and may not be as visually
beautiful as the traditional alignments, but if
they represent correct homology, we have to get
used to them.”

23

A. Löytynoja and N. Goldman. Phylogeny‐
Aware Gap Placement Prevents Errors in
Sequence Alignment and Evolutionary
Analysis. Science 320: 1632‐35, 2008.

Phylogeny‐aware gap placement

24

Protein structure analysis

• Lecture 8
• The sequence, structure, function relationship
• The protein folding problem

Hemoglobin Hammer 25

The protein folding problem

Anfinsen's thermodynamic hypothesis (1973):
Protein folding is a strictly physical process, which
solely depends on the protein sequence

The folding problem:
discover nature’s algorithm for
specifying 3D structure of proteins
from their amino acid sequences

26

Computational folding methods
• No effective folding machine exists

that is based on physical principles
and energy minimization alone

• Current computational methods rely
on known protein structures –
machine learning approach:
– Template-based modeling
– Template-free modeling

Hydrophobic
Hydrophilic

27

Ab initio prediction
AVGIFRAAVCTRGVAKAVDFVP…
AVGIFR

AAVCTR
GVAKAVDF

Score and select model

28

Machine learning

• Lecture 9, Lab 7
• Induction of general models from data

– Bayes decision rule
– Decision trees
– Nearest neigbour approach
– Artificial neural networks (linear versus non-linear methods)
– Genetic algorithms and genetic programming
– Model evaluation

29

What is AI?
“…making a machine behave in ways that would be called intelligent if a human
were so behaving”

- John McCarthy, August 31, 1955

“The subfield of computer science concerned with the concepts and methods of
symbolic inference by computer and symbolic knowledge representation for use in
making inferences.”

- The Free On-line Dictionary of Computing (September 27, 2003)

30

Acting humanly: Turing test

• Turing proposed that a computer program show
intelligent behavior if is able to fool a human
interrogator:

• The Turing test: the computer is interrogated by a
human via a teletype, and passes the test if the
interrogator cannot tell if there is a computer or a
human at the other end
– natural language processing
– knowledge representation
– automated reasoning
– machine learning

31

1912‐1954

Definitions of AI

Four categories of definitions:

Empirical science Engineering

Human-centered Rationality-centered

Reasoning Systems that think like
humans

Systems that think
rationally

Behavior Systems that act like
humans

Systems that act
rationally

AI techniques

• Logics
• Knowledge representation
• Search
• Machine learning
• Pattern recognition
• Automatic theorem proving
• Planning
• Machine vision
• Natural language processing

33

Class knowledge:
Group 1: Nordic countries
Group 2: UK, France, Greece, Spain,
Portugal
Group 3: Benelux countries,
Switzerland, Austria, Italy, Germany

Example: Decision tree learning

Christian Democrats > 16

Group 3

Yes

Agrarians > 4

Yes
Group 1 Group 2

No

No

34

P. Larrañaga. Briefings in
Bioinformatics 2006 7(1):86‐112

Systems biology

• Lecture 10
• The systematic study of complex interactions in

biological systems (integration and holism instead of
reduction)

36

Systems biology

Genome

Transcriptome

Metabolome

Proteome

Systems biology is all
about the arrows!

37

Phenotypes

Interacting genes/protein/metabolites

Emergence

Trans‐
criptomics

Meta‐
bolomics

Prot‐
eomics

Pheno‐
types

Regulatory
genome

(promoters)

Synergy from integration

Systems biology

38

Emergent properties:
differential expression

39

Emergent properties:
AND logics in regulation

Correlation between the gene and
regulator 1: 0.55 (P < 0.06)
regulator 2: 0.65 (P < 0.02)

Correlation between the gene and
linear model: 0.77 (P < 0.003)
non‐linear model: 0.91 (P < 1.2E‐05)

40

Physics

Chemistry

Biology

ܧ ൌ ݒ݄
E = energy
H = Planck's constant
ν = frequency of light radiation

P = absolute pressure
V = volume of the vessel
n = number of moles of gas
R = ideal gas constant
T = absolute temperature

Photoelectric effect

Ideal gas law
ܸܲ ൌ ܴ݊ܶ

Gene interactions




n

j
jijii yy

0


yi = gene expression of gene i
n = number of genes
α = transcription rate
βij= effect of gene j on gene i

ܲ ݇ ~݇ିఊ
k = node degree
P(k) = degree distribution
γ = degree exponentScale free networks

Systems biology Reductionism: «one gene at a time»

Laws of genome evolution

42

A. Log-normal distribution of the
evolutionary rates between
orthologous genes

B. Negative correlation between
gene sequence evolution rate
and expression level (or protein
abundance)

C. Power law–like distributions of
membership in paralogous
gene families and node degree
in biological networks

D. Distinct scaling of functional
classes of genes with genome
size

Koonin. PLoS Computational Biology 7:e1002173, 2011.

0. No dependence: translation
1. Linear dependence: enzymes
2. Quadratic dependence:
regulation/signaling

Computer programming

43

Algorithm

• Algorithm: a sequence of instructions that one must
perform in order to solve a well-formulated problem

• Correct algorithm: translate every input instance into
the correct output

• Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct
output

• Many successful algorithms in bioinformatics are
incorrect algorithms

44

Programs

• Algorithms are implemented in a programming
language to form programs

• Programs consists of:
– Variables: names with values (float, integer, string) or

arrays/tables/hashes of values
– Conditional statements: IF-THEN-ELSE
– Loops: while, for, until, etc.
– Modularity: procedures/functions/sub-

routines/objects/methods
• Pseudo-code: programming language-independent,

often used to sketch a program using pen and paper

45

Pseudo‐code

Sorting problem: Sort a list of n integers:
a = (a1, a2, …, an) e.g. a =(7,92,87,1,4,3,2,6)

SelectionSort(a,n)
1 for i ← 1 to n-1
2 j ← Index of the smallest element

among ai, ai+1, …, an
3 Swap elements ai and aj
4 return a

46

Example run

i = 1: (7,92,87,1,4,3,2,6)
i = 2: (1,92,87,7,4,3,2,6)
i = 3: (1,2,87,7,4,3,92,6)
i = 4: (1,2,3,7,4,87,92,6)
i = 5: (1,2,3,4,7,87,92,6)
i = 6: (1,2,3,4,6,87,92,7)
i = 7: (1,2,3,4,6,7,92,87)

(1,2,3,4,6,7,87,92)

47

Syntax versus semantics

• Syntax: the rules for constructing valid statements in a
programming language

• Semantics: the meaning of a program

• A specific algorithm implemented in different programming
languages would use different syntax, but have the same
semantics

• Syntax is easy and can be checked before execution (the
interpreter will tell you when you make syntax mistakes)

• Semantics is hard and ”bugs” typically only reveal
themselves at execution time

48

Programming languages

• Imperative programming: describes computation as
statements that change a program state (e.g. Perl,
Fortran, C, and Java)

• Functional programming: treats computation as the
evaluation of (mathematical) functions, and often
avoids state (e.g. LISP)

• Declarative programming: while imperative programs
explicitly specify an algorithm to achieve a goal,
declarative programs explicitly specify the goal and
leave the implementation of the algorithm to the
support software (e.g. PROLOG)

49

Sorting: imperative

Sorting problem: Sort a list of n integers:
a = (a1, a2, …, an)

SelectionSort(a,n)
1 for i ← 1 to n-1
2 j ← Index of the smallest element

among ai, ai+1, …, an
3 Swap elements ai and aj
4 return a

50

Pseudo-code hides ugly details such as

“Swap elements ai and aj”

1 tmp ← aj

2 aj ← ai

3 ai← tmp

or

51

“j ← Index of the smallest element among ai, ai+1, …, an”

IndexOfMin(array,first,last)
1 index ← first
2 for k ← first + 1 to last
3 if arrayk < arrayindex
4 index ← k
5 return index

Remember, though, that the devil is in the details!

52

Recursion

RecursiveSelectionSort(a,first,last)
1 if (first < last)
2 index ← Index of the smallest element

among afirst, afirst+1, …, alast

3 Swap elements afirst and aindex

4 a ← RecursiveSelectionSort(a,first+1,last)
5 return a

53

Example I

Write pseudo-code for a program that solves a quadratic
equation ax2 + bx + c = 0:

QuadraticEquationSolver (a, b, c)

Remember that:
a

acbbx
2

42 


54

QuadraticEquationSolver(a, b, c)
1 root ← b2-4ac;
2 if root < 0
3 return “No solution”

4 x1 ←

5 x2 ←

6 if x1 = x2
7 output ”Solution: x = x1”
8 else
9 output ”Solutions: x = x1 or x = x2”

2a
rootb- 

2a
rootb- 

55

Example II

Write pseudo-code for a program that adds a constant to
every number in an array a = (a1, a2, …, an):

AddConstant (a, n, c)

E.g. a = (1, 2, 4) and c = 3 outputs (4, 5, 7)

56

AddConstant(list, n, c)
1 for i ← 1 to n
2 listi ← listi + c
3 return list

57

Example III

Write pseudo-code for a program that remove duplicates
in an array a = (a1, a2, …, an)

RemoveDuplicates (a, n)

E.g. a = (1, 2, 2, 4, 4) outputs (1, 2, 4)

58

RemoveDuplicates(list, n)
1 newlist ← ()
2 for i ← 1 to n
3 m ←length of newlist
4 foundDuplicate ← false
5 for j ← 1 to m
6 if listi = newlistj
7 foundDuplicate = true
8 break
9 if foundDuplicate = false
10 add listi to newlist
11return newlist

59

Example IV

Write pseudo-code for a program that counts from 0 to n
= (n1, n2, ..., nm):

Count (n, m)

E.g. n = (1, 2) outputs:

00
01
02
10
11
12

60

Count(n, m)
1 c ←(0, 0, …, 0)
2 while forever
3 for i ←m to 1
4 if ci = ni
5 ci ←0
6 else
7 ci ← ci + 1
8 break
9 output c
10 if c = (0, 0, …, 0)
11 break

61

