Input

Qutput
—_—

Y

Links

Input Activation

Function Function ~OPut

Genome

Metabolome

Archaea

Lecture 1: Introduction to
bioinformatics

Torgeir R. Hvidsten

Professor
Norwegian University of Life Sciences

Guest lecturer
Umea Plant Science Centre
Computational Life Science Centre (CLiC)

Course information (I)

10 Lectures
7 computer labs

Book: Introduction to Bioinformatics.
Arthur M. Lesk, Oxford University Press.

Credit points: 4 ECTS

To pass:
— attend lectures and labs
— send lab to: david.sundell@plantphys.umu.se

©
—
)
<
p=

’

Computer labs

David Sundell

Course information (ll)

* Course webpage:

— http://www.trhvidsten.com/complife/2012
* Here you can find the

— coutrse program

— online resources
* and download

— lecture slides

— labs and suggestions for solutions to labs

— additional material/examples research articles

% 09 Google Reader (75)

m Computatienal Life Sci... >

- : 2 ’ .®Web www. trhvidsten.com/complife/2012/index.html

| f.‘] + Search with Google

2012.09.20 Lecture 1: 5-11
Thursday KEF30

Self-Study
2012.09.21 Lecture 2: 9-11
Friday KB4CTOD

Self-study
2012.09.24 Computer LAE 1: 9-11
Monday MA31E

Lecture 3: 13-15

KEF30
2012.09.25 Computer LAB 2: 9-11
Tuesday MAZTE
Self-study
2012.03.26 Lecture 4: 3-11
Weadnesday KEF20
Computer LABE 3: 13-15
MAZ1E
2012.09.27 Computer LAB 3: 9-11
Thursday MAZT6E

Lecture 5: 13-15

KEF30
. 2012.09.28 Computer LAE 4: 13-15
Friday MAZT6E
i
Self-study
2021001 Lecture 6: 9-11
Monday KEBF30
Computer LAES: 13-15
MA3I6
201z.10.02 Lecture 7: 5-11
Tuesday KEF30
nputer LAE6: 13-15
4216
2012.10.03 Lecture 8: 9-11
‘Wednesday KEF30
Self-study
2012.10.04 Lecture 9: 9-11
Thursday KEF30
Computer LAB 7: 13-15
MAZT6E
l 2012.10.05 Lecture 10: 5-11
Friday KE4C10

€ sftenposten [Tl Dagbladet YRYr W Wikipedia [Biro @) Football-italia [Milano Siamo Noi [T TRH [CiteUlike [IntraUME [SpruceWwiki

Introduction to bicinformatics, computational biclogy and systems biclogy
Introduction, Scientific publication and archives, Archives and information
retrieval

Programming in Perl: Introeduction 1

Introduction, Scientific publication and archives, Archives and information

retrieval

Basic expressions, scalars, arrays, loops, conditions, file handling

Pregramming in Perl: Introduction 2

Hashes, data structures, references, subroutines, modules

LAB 2 cont.

Programming in Perl: Introduction 3

Eioper|

LAB 3 cont.

Algorithm design and time /space complexity analysis

Pseudo-code, algorithm design and time /space complexity analysis

LAE 3/Lab 4

Sequence alignment

Sequence alignment

Evelutionary analysis, phylogenetic analysis

Fhylogenetic analysis

Protein structure analysis

Read the book

Machine learning

Machine learning

Systems biclogy

. UPSC NetAlign

Slides 1 WEEK 38 i !
Chapter 1, 3 and 4
Slides 2
Chapter 1, 3 and 4

WEEK 3%
Lab 1 (selutions)

numbers .txt
Perl tutorials

Slides 3

Lab 2 (selutions)
microarray. txt
network.txt

Slides 4

Lab 3 (selutions)
hvidsten.com.html|
genpept.txt

Slides &

Lab 4 (solutions)
promaoters txt
MEME results (pdf)
MEME results shuffled (pdf)

m

Slides & WEEK 40
Chapter &
Lab & (solutions)

Slides 7
Chapter 2 and 5
Lab &
get_sequences.pl
change_names.pl
hiv_ids .txt
Slides &
Chapter &
Chapter 2, 5 and &
Slides 3

Lab 7
adenoca_markers .xIs
Dennis-ClinCancerRes2005. pdf
Slides 10
Course evaluation: eval
If not present at the last lecture, mail the

—

£ T

H & O httpe/fwww trhvidsten.com/complife/2012/index.html

Course goals

At the end of this course you will :

have basic knowledge of online bioinformatics resources
(databases, ontologies, etc)

know how to write and debug basic Perl programs and use
online Perl libraries

recognize the different algorithm design techniques and be able
to do basic time/space complexity analysis

know how to apply, and interpret results from, classical
bioinformatics approaches such as pairwise and multiple
alignment, phylogenetic analysis, and machine learning

have a basic understanding of approaches applied in structural
bioinformatics and systems biology

This lecture

e Introduction to bioinformatics
* Introduction to the topics of this course

* Introduction to programming:
— programming languages

— pseudo-code

DNA sequence comparison:
First success story of bioinformatics

* In 1984 Russell Doolittle and colleagues found
similarities between a cancer-causing gene and a
normal growth factor (PDGF) gene using a
database search

* Finding sequence similarities with genes of
known function is a common approach to predict
the function of a newly sequenced gene

* “Bioinformatics will disappear and become an

integrated part of biology” (Doolittle, 2002)

Bioinformatics

COMPUTER SCIENCE

BIOLOGY N\ R STATISTICS
' MATHEMATICS

Bioinformaticians

Bioinformatics

10

Definitions

 Buoinformatics: Research, development, or application of

computational tools and approaches for expanding the use of
biological data, including those to acquire, store, organize,
archive, analyze, or visualize such data.

Computational biolggy: The development and application of data-
analytical and theoretical methods, mathematical modeling and
computational simulation techniques to the study of biological
systems.

System biology: the systematic study of complex interactions in
biological systems (integration/holism instead of reduction)

11

The book

e Introduction to Bioinformatics. Arthur M. Lesk,
Oxford University Press (2nd edition 1s online)

* Covers mostly basic bioinformatics (databases, online
resources)

e Some of the lectures will be more advanced and
towards computational biology/systems biology

Programming

Lectures 2-4, Labs 1-3

Do bioinformaticians
need to know how to
program?

We will use the
programming language
Petl

Vatiables | Breakpoints | Mocies |

Name | Type [

gzeg->length, " bases
is ", §seq->revcom->seq,

13 |Sout->write seg(§seq);

¥ Console | Enar Output | Callstack |

Start parameter:

Lfsa’

, —format =»

'Fasta');

=] Open Perl IDE <testpl> - [Clsers\Torgei WORK\Activities\Teaching\LsnguagesAlgorithmsiLabs\test.pl] (=B [
Fle Edit Search Project Run Window Help — _[=]x
0 & @ & o =)
Desktop: [IEEN] <] | peiScbpl testpl \
FinnE :

Ready

Algorithm designs

 Jecture 5, LLab 4
* Types of search algorithms

* Time/space complexity

p< p<
okl —:
ol

14

Sequence alignment as a search problem

W

’ N \’ \’ Deletion
1 R R Yy K
\’ Matches

<

N

Ve
<

\ 4
<

H w
/‘L
<
¢ Ve
| | -
| / L
<
Ve Ve A
| |
Ye Ve
| |
/L
<
A Ve
| |
5 /
<

(9,
\ /7

<
%//i
\ /7

- -

”

il
\ /7

<
%//i
\ /7

<

N o
v
Y, Y,
l |
!/‘L
l -
Y, Y,
l -
Y, Y,
l -
Y,
l
v y
il
v,
<

-TGCAT-A-C
AT-C-TGATC

15

Algorithm design (I)

Exhaustive algorithms (brute force): examine every
possible alterative to find the solution

Branch-and-bound algorithms: omit searching through
a large number of alternatives by branch-and-bound or
pruning

Greedy algorithms: find the solution by always
choosing the currently best” alternative

Dynamic programming: use the solution of the
subproblems of the original problem to construct the
solution

16

Algorithm design (Il)

* Drivide-and-conquer algorithms: splits the problem into
subproblems and solve the problems independently

* Randomized algorithms: finds the solution based on
randomized choices

* Machine learning: induce models based on previously
labeled observations (examples)

17

Time complexity

* Genome assembly: pice together a genome from short reads (~200bp)

— Aspen: 300M reads
— Spruce: 3000M reads

* Pair-wise all-against-all alignment for Aspen takes 3 weeks on 16 processors

e What about sprucer

Bioinformatician:
Spruce: 300 uker

Time complexity: O(n?)

Time (weeks

Biologist:
Spruce: 30 weeks

0 500 1000 1500 2000 2500 3000 3500
- 18
Million reads

Tractable versus intractable problems

* Some problems requires polynomial time
— e.g. sorting a list of integers
— called tractable problems

* Some problems require exponential time
— e.g. listing every subset in a list
— called intractable problems

* Some problems lie in between
— e.g. the traveling salesman problem

— called NP-complete problems

— nobody have proved whether a polynomial time algorithm
exists for these problems

19

raveling

salesman

SOLAT HOUSE

[SFvnafELL
SAVEAMDY

AUSGT oA
O & LINZOLM AERY
“eE JulY NEN) CuER
TR 20IRD CIRGLIT
N 3eg

TAVLORWLLS

NELTAw

CoWAT Halil

€ GAUNTT-5CAT JHATEC
FPDO TREWONT TG LT N
e B3C)

e

L JOUIRGTIN

GARISTAN
SHELBWVILLE

COUNTIES 1N ML, .CHBOOUNT™

SNELSY - - ‘o,
o35 10 2 30
SCALZ Ifr WILES

1 ¢

Gins P4 ﬁr?::
P :
o~ LINCO_N 8 =(ANOaM
E 2] Aw CERICE SPANSFIELD
a
AW WL
JeCayr A
= /
E
b= 4
E964° X

MARLENS
ALtNG BT JIRCHT
ARFINAON LIMCO N
—] TRAVELED THIS WAY
40 A5 <E RQOE “NE CIACLI?

OF THC E4N™ ACICAL ;

DIErmcy IMc-inyg

$Parg (W wZ2TI0LL5 PLEWETH OF CIRGUIT AA0UT $5C MILES

()

.ﬂ.m.‘-pno! uvis 3@y

THE 8TH CIRCUIT AS TRAYELED BY MR. LINCOLN IN 1850

20

Sequence alignment

* [ecture 6, Labs 3 and 5
* Pair-wise alignment (BLLAST)

—-—T—CC-C-AGT—TATGT-CAGGGGACACG—-A-GCATGCAGA-GAC

aatreldole- ot M drtate 1 UL L

* Multiple alignment (PSI-BLLAST, HMMs, pFAM, etc.)

=

‘iM‘(,

LRLSCSSSGFIFSS--YAMYWVRQA--

LSLTCTVSG-SFDD--YYSTWVRQP--

PEVTCVVVD-SHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKD-FPEP--VTVSWNSG---
VSLTCLVKGFYPSD--1AVEWESNG--

Evolutionary analysis, phylogenetic analysis

e Lecture7,Lab 6

ARCHAEBACTERIA

EUKARYOTES EUBACTERIA
Unrooted Phylogenetic Tree Based on 16S-like rRNA Sequences

22

Phylogeny-aware gap
placement

Conclusion:

“The resulting alignments may be fragmented
by many gaps and may not be as visually
beautiful as the traditional alignments, but if
they represent correct homology, we have to get
used to them.”

A. Loytynoja and N. Goldman. Phylogeny-
Aware Gap Placement Prevents Errors in
Sequence Alignment and Evolutionary
Analysis. Science 320: 1632-35, 2008.

Phylogeny-aware

Site-specific
alignment

Interpretation: ancestral sequences: ACT

mutation events: Y i viy
A-T
AGT
A-T

ACT

Insertion Deletion
& AT A-T 8 A-T
g AT
= AT ﬁﬁi AGT AGT AGT
= AT AC
g AT A-T AGT
(il
AT A-T AGT
Cost: -6 (= =w) Cost: -2 (=)
o 2NA) 2ATA)
S8 AT AT AT A-T A-T AT
g = e oS Act AT A-T A-T
2 E AT YS—AGT AGT AGT
(o)) e)] =
Oe_ % [©) ‘\ T T AGT
AT A-T AGT
Two insertions
C
(= AT AT A--T A-GT
g e
=] AL AGT AG-T ACGT
?‘:-’ o AT A--T ACGT
= Yo
ACT A-CT AC-T
Cost: -3%z (o <e)
NN
AT A-T AT A-GT A-GT A GT
2(.;; 281 At AT A-T igg; ACGT AceT AGT A-GT
ese AT e—ee ACGT
ACM AGT AGT |4 CTJ’@/@"‘/-« ACGT ACGT
G G
ACT ACT ACT A-CT

Interpretation: ancestral sequences: ACGT

mutation events: **ﬁg

alignment

Cost: -4 (=)
NALEA
A-T A-T AT

L
ﬁ? ; 551 AGT AT A--T
ia AT o
* CT‘/O‘\ AGT AG-T

2
G’\ AT A--T
ACT A-CT
Interpretation: ancestral sequences: AT

mutation events: i ¥

A-GT
ACGT
ACGT ACGT
ACYT ACGT
A-CT
Cost: 4 (= =)
lALTLA
K& AF 58
CG AGT A-GT
ACGT 2831 ATk
AC T ACGT ACGT
G\ACGT ACGT
ACT AC-T

Interpretation: ancestral sequences: ACGT

mutation events: Y ¥

Mutation events: Match costs: Gap costs: Alignment flags:
T insertion -0 > =2 L high cost site

5 e=-1 < = . ost site
*deleuon v=0 B potential free gap
Tﬁ?substilmion =0 m compulsory gap

Phylogeny-aware gap placement

A

L':Dd-ﬁlndm Ioop

m R N I.—_ LR 11} —_I -—-

|":' H" h |
I l '||' |‘!_ I|||
n'l|.1 'r" 4
1t| |

il

Il'n ||||| | '.«II[J

1 4-bind|i
vi Cuaq;pw2 CIJ L'-ndngloop
I
i

AL

|

H-
¥
N
N
N
N
N
N
|
N
]
N
N
N
N -
AT
) <R|El - A il R s
180 : 200 240)\ 250 /1 260 570 /1280
fB independent deletions | | distinct insertions at same position | | 2 independent deletions |

24

Protein structure analysis

* [ecture 8
* The sequence, structure, function relationship

* The protein folding problem

Hemoglobin

The protein folding problem

Anfinsen's thermodynamic hypothesis (1973):

Protein folding is a strictly physical process, which
solely depends on the protein sequence

The folding problem:

discover nature’s algorithm for

specifying 3D structure of proteins
from their amino acid sequences

26

Computational folding methods

* No effective folding machine exists

that 1s based on physical principles o Al ’
and energy minimization alone Ty *‘,
* Current computational methods rely N
on known protein structures — . Hydrophobic
. . Hydrophilic
machine learning approach: /

— Template-based modeling
— Template-free modeling

27

AD initio prediction

AVGIFRAAVCTRGVAKAVDFVP..
AVGIFR

AAVCTR
GVAKAVDF

Score and select model

28

Machine learning

e Lecture 9, LLab 7

* Induction of general models from data
— Bayes decision rule
— Decision trees
— Nearest neighbour approach
— Artificial neural networks (linear versus non-linear methods)
— Genetic algorithms and genetic programming

— Model evaluation

29

What is Al?

“...making a machine behave in ways that would be called intelligent if a human
were so behaving”

- John McCarthy, August 31, 1955

“The subfield of computer science concerned with the concepts and methods of

symbolic inference by computer and symbolic knowledge representation for use in
making inferences.”

- The Free On-line Dictionary of Computing (September 27, 2003)

30

Acting humanly: Turing test

* Turing proposed that a computer program show ™
intelligent behavior 1f is able to fool a human

interrogator:

* The Turing test: the computer is interrogated by a
human via a teletype, and passes the test if the
interrogator cannot tell if there 1s a computer or a
human at the other end

— natural language processing
— knowledge representation
— automated reasoning

— machine learning

31

Definitions of Al

Four categories of definitions:

Empirical science Engineering

Human-centered Rationality-centered

Reasoning | Systems that think like Systems that think
humans rationally

Behavior Systems that act like Systems that act
humans rationally

Al techniques

Logics
Knowledge representation
Search

Machine learning

Pattern recognition
Automatic theorem proving
Planning

Machine vision

Natural language processing

33

Example: Decision tree learning

Social Subnatioral, Christian
Countey Communists | Scocialists | Greens | Democrats | Liberals | Agrarians regicnal and Democrats | Consarvatives | Extreme Right
ethnic partias
MNorway a 7 a 38 4 a =] 24 &
Swadan B 9] 2 43 1Q 17 9] 2 15 1
Denmark 4 =] a 33 13 14 a 3 15 9
Finland 15 a 2 24 3 25 5 3 21 a
lceland a 18 3 16 4 2 a a 36 a
UK a a =] 39 15 4 a 42 a
Nether lands Z 5 0 30 23 0 0 75N\ 0 0
Belgi urm 2 a £ 27 19 9] 14 31 a 2
Luxembourg A 1 3 31 21 g] 34] 1
Switzerland 2 2 7 22 23 (11) a =z 3 5
Austria 1 Q 2 45 0 — Q 41 Q 5
Gearmany 1 a 3 40] W] a Nied a 1
France 15 2 2 25 20 9] a é 25 5
Ttaly 75 g 3 15 El g 3 U3) z 3
Graace 14 a a 39 &} 9] a - 44 a
Spain 8 a a 39 16 9] 14 a 2 1 a
Portugal 15 a 1 31 38 Qa a 1 a

Class knowledge:
Group 1: Nordic countries
Group 2: UK, France, Greece, Spain,
Portugal
Group 3: Benelux countries,
Switzerland, Austria, Italy, Germany

Christian Democrats > 16

Group 3

Group 1

Agrarians > 4

Group 2

EVOLUTION

E}l:l{?ingene : . TF binding sites
Phylogen_etic tree Coding region g Ei‘t’gce Promoter bindin
construction identification Alternative | prediction | sites 9
: splicing H
......................... e S
T : Sequence assemble
f emramAR AT~ 1 mressssssssssssssssssess frassnsnnnnnsnnnnnn
F O o IV Function MOTIF IDENTIFICATION
g - COmparISOn --
--- -:--------------------"u- SNP 3 and |I|"Ikage ana|y'SIS
Gene Gene function prediction RNA structure prediction
annotation
Word
disambiguation
U] Protein‘function prediction Protein structure prediction;
Z STRUCTURE
E : FUNCTION PREDICTION : PREDICTION
&] e Rl S ned
z Protein location prediction
|_ Protein
>< annotation Protein-protein interaction
-
PROTEOMICS

SYSTEMS BIOLOGY

Signalling networks

Metabolic pathways

Genetic networks

Pri

P. Larrafaga. Briefings in
Bioinformatics 2006 7(1):86-112

Backtranslation

OTHER APPLICATIONS

Mass espectrometry data
pre-processing

Mass espectrometry data

mer design Analysis

MANAGEMENT

DATA

Biomedical image analysis

MICROARRAY

Microarray data analysis

Microarray data
pre-processing

Microarray image analysis

Systems biology

e [.ecture 10

The systematic study of complex interactions in
biological systems (integration and holism instead of
reduction)

36

Systems biology

Genome

rapnscriptome

Systems biology is all
about the arrows!

Systems biology

Phenotypes

Regulatory
genome

(promoters)|

Trans- | ~ Pheno-
- criptomics types

C

s N
)

Prot- Meta-
eomics)bolomics

Synergy from integration

38

Interacting genes/protein/metabolites

Gene 2

0.8 -

0.6 -

04 -

0.2 A

Emergent properties:
differential expression

L 4 ’
’
L L 4 §*
L 4 ’I
¢ / |
7/
'
4 4 /, [|
/
r o ¢ Slowgrowing trees
/
/ 2
B Fastgrowing trees
L * 20 o
r' - = = = Classification line
P a
; B
/
/
£ - T T T 1
0 0.2 0.4 0.6 0.8 1
Genel

39

Emergent properties:
AND logics in regulation

2.5 +

2 4

15 -

1 e regulator 1
ot regulator 2

gene
0 - .
== == |inear model

-0.5 = = = = non-linear model
-1

1.5 A

Correlation between the gene and
regulator 1: 0.55 (P <0.06)
regulator 2: 0.65 (P <0.02)

Correlation between the gene and
linear model: 0.77 (P <0.003)
non-linear model: 0.91 (P < 1.2E-05)

40

P =
87&2 L& E =energy
Physics \2\ “ / E=hv H =Planck's constant

Photoelectric effect - ® e _eo, v = frequency of light radiation

P = absolute pressure

V =volume of the vessel
PV = nRT n =number of moles of gas
R
T

Chemistry
Ideal gas law = ideal gas constant
= absolute temperature
Ssion of gene i
_ mber of genes
lo yl_ai+2ﬂijy rore
_ = ription rate
Ge#ein tions J jon gene i
‘ k = node degree
Systems biology Resystiopism: «cﬁﬁ(é genegtaditrievtion

= degree exponent

Scale free networks

Laws of genome evolution

Log-normal distribution of the
evolutionary rates between
orthologous genes

Negative correlation between
gene sequence evolution rate
and expression level (or protein
abundance)

Power law—like distributions of
membership in paralogous
gene families and node degree
in biological networks

Distinct scaling of functional
classes of genes with genome
size

Koonin. PLoS Computational Biology 7:€1002173, 2011.

OPEN a ACCESS Freely available online

Are There Laws of Genome Evolution?

Eugene V. Koonin®

I)I .‘]S COMPUTATIONAL BIOLOGY

National Canter for Biotachnology Information, Nationsl Libeary of Medicine, Mational Institutes of Health, Bathasds, Maryland, United States of America
Bl §.
b
: °
1= o
1 2
2 Bty @'
& L o
21 o o o DO__ .
& o a Rl)
= ° 2o
2| oo o
= 2 B o e
! oo &
[log] gene evelution rate [log] protein abundance
D.
g g %
=9 1 o
E %' B o7 %
g £ 1 1 o %9-] o 5%
&] -] o 4
£] a2 g g &
s - i 24 E,&lge o &E"
o, < B
_§ LN o "E adr s
5 Do ‘E g"’ 2
| ~.0
bt} 3 h L W
| e 2 R e U o
@™
o b‘\m £ “
T o ©-PON0-O-00-— 00000 T T T T
[log] gene family size [leg] number of genes in genome

0. No dependence: translation

1. Linear dependence: enzymes

2. Quadratic dependence:
regulation/signaling 42

Computer programming

43

Algorithm

Algorithm: a sequence of instructions that one must
perform in order to solve a well-formulated problem

Correct algorithm: translate every input instance 1nto
the correct output

Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct
output

Many successtul algorithms in bioinformatics are
incorrect algorithms

44

Programs

Algorithms are implemented in a programming
language to form programs

Programs consists of:

— Variables: names with values (float, integer, string) or
arrays/tables/hashes of values

— Conditional statements: IF-THEN-ELSE
— Loops: while, for, until, etc.

— Modularity: procedures/functions/sub-
routines/objects/methods

Pseudo-code: programming language-independent,
often used to sketch a program using pen and paper

45

Pseudo-code

Sorting problem: Sort a list of 7 integers:
a=(a,a,,..,a)eg a=(792_87147320)

SelectionSort(a,n)

1 fori«—17ton1

2 7« Index of the smallest element
aMmong a, d; , ..., d,

3 Swap elements ¢, and 4,

4 return a

46

N, N,
T

. N,
I

N, N,
T

N,
|

1
NS RN =

Example run

(7,92,87,1,4,3,2.6)
(1,92,87,7,4,3.2,6)
(1.,87,7,4,3,92,6)
(1.2.3,7,4,87,92,6)
(17,87,92,6)
(87,92,7)
(92.87)
(

)

47

Syntax versus semantics

Syntax: the rules for constructing valid statements in a
programming language

Semantics: the meaning of a program

A specific algorithm implemented in different programming
languages would use different syntax, but have the same
semantics

Syntax is easy and can be checked before execution (the
interpreter will tell you when you make syntax mistakes)

Semantics 1s hard and ”bugs” typically only reveal
themselves at execution time

48

Programming languages

* Imperative programming: describes computation as
statements that change a program state (e.g. Perl,
Fortran, C, and Java)

* Functional programming: treats computation as the
evaluation of (mathematical) functions, and often
avoids state (e.g. LISP)

* Declarative programming: while imperative programs
explicitly specity an algorithm to achieve a goal,
declarative programs explicitly specify the goal and
leave the implementation of the algorithm to the
support software (e.g. PROLOG)

49

Sorting: imperative

Sorting problem: Sort a list of 7 integers:

a=(a,d,...a,

SelectionSort(a,n)

1 fori«—17ton1

2 7« Index of the smallest element
aMmong a, d; , ..., d,

3 Swap elements ¢, and 4,

4 return a

50

Pseudo-code hides ugly details such as

“Swap elements «;and a,”

! z‘wp <«— /.

J
2 dj(— dz'
3 a< tmp

or

‘7 «<— Index of the smallest element among a,, a;, , ..

IndexOfMin(atray, st Jas?)
1 index < first

2 for k& <« first + 1 to last
3 if array, < array, .

4 index «— k

5 return zndex

Remember, though, that the devil is in the details!

., a

7

)

52

Recursion

RecursiveSelectionSort(a,first, las?)
1 if (farst < las?)

2 mdex «— Index of the smallest element
among dﬁmﬁ dﬁm‘+7> ** d/cm‘
3 Swap elements a;,, and a,,,,.

a «<— RecurstveSelectionSort(a,first+1,Jas?)

5 return a

53

Example |

Write pseudo-code for a program that solves a quadratic
equation ax’ + bx + ¢ = 0:

QuadraticEquationSolver (4, b, ¢)

~b++/b* -4
Remember that: X = D \/2b ac
a

54

QuadraticEquationSolver(a, 4, ¢)

1
2
3

O OO0 1 O

root <— b?-4ac;
if root < 0
return “No solution”

-b +4/root

2a

-b—4/root

2a

x]1 «

X2 «—

if x1 = x2
output ’Solution: x = x1”
else

output “Solutions: x = x1 or x = x2”

Example Il

Write pseudo-code for a program that adds a constant to
every number in an array a2 = (a;,2,, ..., 4_):

AddConstant (a, 7, ¢)

E.g a=(1,2,4) and ¢ = 3 outputs (4, 5, 7)

56

AddConstant(list, 7, ¢)
1 for/< 7ton
2 list, <— list, + ¢

3 return list

Example Il

Write pseudo-code for a program that remove duplicates
in an array a2 = (a;,a,, ..., a_)

RemoveDuplicates (a, 7)

E.g a=(1,2,2,4,4) outputs (1, 2, 4)

58

RemoveDuplicates(list, 7)

1 newlist « ()

2 fori< 7ton

3 m <—length of newlist
SfoundDuplicate «— false

for j«— 7 tom

SfoundDuplicate = true
break
if foundDuplicate = false
10 add /is?, to newlist

11 return newlist

4
5
0 it /ist; = newlist,
7
8
9

Example IV

Write pseudo-code for a program that counts from 0 to n

= (1), Nyy vey 1)

Count (n, 7)

E.g. n = (1, 2) outputs:

00
01
02
10
11
12

60

Count(n, »)
1 ¢c«—(0,0,...,0
2 while forever
3 for / «—mto 1
if ¢, = n,
¢, <0
else
(< ¢+ 1
break
output c
10 ifc=1(0,0,...,0)
11 break

O OO0 1 & Ul B~

