Predicting local proteinsstructure
using hidden Markov models

Practical information

You can work in pairs on this project. After completion you should write a report
containing:

1. brief introduction to the problem,

2. related research: Take one of the three papers available on the course web page
and read it. Discuss what you have done in the context of this paper (about 300
words),

3. method section: Describe your implementation,

4. results and discussion: Document your results. Don't just paste in output from
your program. Make meaningful figures/tables summarizing the results. Discuss
the results. Don’t just say meaningless things like “we see that method A works
better than method B”. Discuss why you think thisis!,

5. conclusions.

Email the report to Feifei within the deadline (Friday, 2008.10.17 at 12.00).

After the deadline you will receive the report of one of the other groups by email. During
the presentation on Monday 2008.10.20 at 13-15 you are responsible for asking questions
to that group. Prepare a short 15 min presentation. A computer and projector will be
available.

If you meet the report deadline, include all parts of the report, hold a presentation and
review another group’ s report you will be given 0-4 bonus point depending on the quality
of your report, presentation and the insightfulness of your questions to the other group.

Good luck!



Background

A detailed understanding of the molecular activity of proteins requires knowledge of their
three-dimensional structure. However, experimental methods for determining protein
structure, such as crystallography or NMR, are expensive and time consuming. For this
reason experimental structures are only available for approximately 30 thousand of the 30
million protein sequences known today.

Computational methods for predicting the three-dimensional structure of proteins from
sequence have come a long way in the last ten years, however, they are ill largely
unreliable unless a close sequence homologue of known structure exists. Computational
methods for predicting the structure of a target sequence given a database of known
structure can be divided into three classes:

1. Homology modeling (comparative modeling): A protein with high sequence
similarity to the target exists in the structural database (i.e. template), and the
problem is reduced to aligning the two sequences and transferring the structure of
the template to the target.

2. Fold prediction: Thereis no clear sequence homology between the target and any
sequence in the database. However, the fold of the target is represented in the
database, and the problem becomes finding the correct fold and fitting the target
sequence to this class of protein structures based on the physical/chemical
properties of specific amino acids (threading).

3. New fold prediction (ab initio prediction): The correct fold is not represented in
the database, and the structure of the target has to be modeled ab initio (for the
beginning) by e.g. assembly using a library of protein fragments and an energy
function.

In this project we will investigate a method based on local descriptors of protein
structure. This approach is applicable both to fold and new fold prediction, however, here
we will limit ourselves to model and recognize local substructures and use this to identify
the correct fold of a protein domain.



a. Local descriptor: structure b. Descriptor group: structure

C. Descriptor group: sequence

DESCRI PTOR FRAGVENT 1 FRAGVENT 2 FRAGVENT 3 FRAGVENT 4 FRAGVENT 5

lganme_#37 35-40 FElI GSC 56- 60 TAI EI 83-7 KDI LG96- 102YKI FGNI 108- 16TDI | RKI VF
1938a_#46 44-9 LEPACA 68-72 VGVEI 88- 92ADFLL 100- 6 DLI LGNP144- 52GAFLEKAVR
1g55a_#9 7-12 LELYSC 31-5 AAIDV55-9 KTIEC 71-7 DM LMSP 100-4 ----LH LD
lhdoa_#9 7-12 Al FGAT 31-5 TVLVR53-7 GDVLC 69- 75 DAVI VLL 88- 96 SEGARNI VA
1booa_#272 270-5 VDI FGC 291-5 | SFEVN 33- 7 GDSLE 48- 54 SLVMISP 77- 85 LSFAKVVNK
1li 9ga_#106 104- 8 LEAGA- 128- 321 SYEC160- 4SDLAD 175-9 - - AVLDV183- 91VEVLDAVSR
leg2a_#249247- 51LDFFA- 268- 721 CTDA 45-9 CDCLD 60-4 QLI| G- 86- 94 KRW.AEAER
lek6a_#8 6-11 LVTGGA 30-4 VWVIDN65-9 MDI LD 83-9 MAVI HFA109- 17LTGTI QLLE
lbxka_#7 5-10 LI TGGA 30-4 VWWDK58-62VDI CD 78- 82 - - VMHLAL102- 101 VGTYTLLE
lgrra_#7 5-10 MVI GED 29-33 Cl VDN 74-8 CGDI CD 92-8 DSVVHFC 121-9 VI GTLNVLF

Figure 1. @) An example of alocal descriptor of protein structure consisting of five
fragments. b) Descriptors in other proteins that are structurally similar to the descriptor
in a). ¢) The sequence alignment resulting from the structure alignment in a). Each row
isone local descriptor named as * protein domain name' # central amino acid’.

L ocal descriptors of protein structure

A local descriptor of protein structure is a set of short backbone fragments centered in
three dimensions around a particular amino acid (Figure 1a). A local descriptor is built by
a) identifying all close amino acids within a radius of 6.5 A (an amino acid is
represented as the point on the vector [C,,Cp] that lies 2.5A away from C,,),
b) for each close amino acid, adding four sequence neighbors, two from each side, to
obtain continuous backbone fragments of five amino acids, and
C) merging any overlapping fragments into segments.

One can compute local descriptors from all amino acids in a representative set of protein
domains from the Protein Data Bank (PDB, http://www.rcsb.org/pdb) with less than 40%
sequence identity to each other and then construct a library of commonly reoccurring
local descriptors by
a) for each local descriptor identifying a group of structurally similar local descriptors
and
b) selecting a set of representative, partially overlapping descriptor groups (Figure 1b).

By doing this it is possible to obtain a relatively small number of local substructures
(approx. 4000 descriptor groups) from which all protein structures in PDB can be
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assembled. Each group presents a link between sequence and structure at the local level
by providing several examples of sequence fragments that take on the same local
structure conformation (Figure 1c).

a) Domain 113lal from fold a4 b) Domain 1h9kal from fold b40
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Figure 2. Representative structures for the folds studied in this project.

Data

In this project we will model the sequence-structure relationship in descriptor groups
using hidden Markov models. We will look at a reduced dataset of six descriptor groups
(Table 1). All protein domains in one group come from the same fold, and there are two
different folds (see SCOP: http://scop.mrc-Imb.cam.ac.uk/scop):

Fold a4: DNA/RNA-binding 3-helical bundle (Figure 2a)
Fold b40: OB-fold (Figure 2b)

Table|. The descriptor groups considered in this project.

o Number of
. Number of similar
Descriptor group d ) sequence Fold
escriptors ¢

ragments
lcuk_3#18 42 3 b40
1h9kal#27 39 4 b40
1hl val#42 63 3 a4
1j j cb3#54 19 3 b40
11 31 a1#194 28 3 a4
1l nwa_#57 54 3 a4

For each descriptor group you are given threefiles, e.g.
1. 1h9kal#27_donmi ns. t xt: Thisfilelists the protein domain name, the local

descriptor name and the fold for each members in the descriptor group:
1 1a0i _1 1a0i _1#270 b. 40




2 1lan8_1 1lan8 1#39 b. 40
3 1b8aal 1b8aal#39 b. 40
4 1bkb_2 1bkb_2#93 b. 40
5 1bvsa3 1lbvsa3#19 b. 40

2. 1h9kal#27 sequences. t xt: This file lists the sequence of each domain
with one or more descriptor in the group; one sequence per line. To more easily
read the sequence into Matlab, the amino acids are coded as integers (see the file

aminoacids.txt):
13 412 4136881461018 19 6 17 96 10 1 12 4 6 9 18
86 54 18 10 10 4 16 6 15 10 18 12 1 17 12 8 16 15 1 10 11
34517 417 18 9 41 17 10 16 14 19 6 55 16 13 20 6 8 6
3123121781213 203619 12 14 8 16 20 11 4 4 17 13
3616 10 15 7 13 16 5 18 11 5 15
993816 12 18 9 16 3 10 10 20 1 20 17 8 17 13 20 3 20 9
321518 12 516 17 17 7 17 10 12 8 3 17 14 9 20 156 9 3
20 20 8 16 16 4 11 16 20 4 1 16 14 95 9 15 3 3 7 18 3 18 5
6 10 520 8 10 12 16 7 17 6 4 20 8 20 6 6 8 17 13 1 14 12
11 20 15 17 7 20 16 16 4 8 17 4 4 10 12 6 14 9 18 9 18 1 6
19 18 19 4 18 9 3 10 6 6 8 9 5 10 19 8 15 3 15 3 6 8 18 14
8 1711399918 313 41059 10 8 13 9 10 15 16 4 3 18
18 1 18 4 6 18 18 12 517 13 919 106 5 4 8 10 13 4 9 8
18 18 10 12 15 1 4 17
8849517114 8 10 16 18 16 6 3 18 8 14 10 11 3 11 15 3
209 17 8418 13 11 92018 44419615101 136 1 4
18 4 18 19 14 8 10 3 15 20 9 8 8 15 18 9 6
11 8516 18 156 4 18 10 4 18 1 10 3 71188 4 116 8 6
20 15 18 12 1 17 13 16 1 10 1 17 10 12 14 6 16 14 1 15 10
18 17 1 11 18 18 15 4 3 16 11 17 10 20 6 5 16

3. 1h9kal#27 _descri ptors.txt: Thisfile lists the descriptors in the group
by giving the start and stop positions of each fragment in the sequence; one

descriptor per line.
5 11 26 34 36 42 85 91
23 29 33 41 47 53 65 71
21 27 35 43 44 50 70 76
5 11 15 23 26 32 47 53
5 11 15 23 24 30 42 48

Example:
The fourth line in the domain-file contains the descriptor 1bkb 2#93. This means that the

fourth line in the sequence-file contain the sequence of domain bkb_2, and the fourth line
of the descriptor-file contain the start and stop positions for the fragments of the
descriptor 1bkb_2#93 in the sequence.

Thus the positions 5 11 15 23 26 32 47 53 correspond to the following fragments in the
sequence (bold):

88495171148101618166318814101131115320917841813119
2018444196151011361418418191481031520988151896



or if coded back to amino acids:
5-11 FTAQILS 15-23 DVIQLMDMR 26-32 KTIEVPM 47-53 AEVEVWQ

Note that the descriptor file gives a set of, in this case, four multiple alignments (i.e. the
alignments of the corresponding fragments in each descriptor given by their structural
similarity). The multiple alignments are intercepted by caps that vary in length from
sequence to sequence. Note for example that the gap between the second and third
fragment in 1bkb 2#93 (line 4) is of length two, while there is in fact no gap in
1bvsa3#19 (line 5). Note also, that, for ssmplicity, we consider only descriptor groups
without deletions in this project.



Proj ect

The data you need to do this project can be downloaded from the course website:
Material.zip.

Although you are free to use any programming language for this project, some Matlab-
functions to help with the practical issues of i/0 et ceterais provided with the Material.zip
file. See “help” in Matlab for how to be able to call these functions (also; see the end of
this document). You may want to use the functions hmmviterbi, hmmdecode etc. from
Exercise 4 aso.

Remember: Play around with the problem and have fun. This is new research you are
doing.

Task 1

Propose an architecture for a hidden Markov model that can model the set of multiple
alignments, and the gaps between them, given by alocal descriptor group. An end state
can be incorporated by adding a special symbol (21) which denotes End. This should
only be emitted by the end state.

Hint: There are no insertions/del etions within each multiple alignment, in other words,
each position in the segments of the alignment should be represented by a hidden state.

Task 2

Build the HMM; one for each group. Estimate the parameters for each descriptor group
using the training set.

Task 3

a) Investigate to what degree the HMMs are able to assign the six local substructures
to the correct positionsin the sequences used to train the models.

b) Thefileslabeled TEST contains sequences that where not used to train the model
and descriptors that match the groups we use to train the HMMs. Note that none
of these sequence have a statistically significant sequence similarity to any
sequencesin thetraining set (i.e. BLAST E-score > 0.05). Investigate to what
degree the HMMs are able to assign the six local substructures to the correct
positions in these unseen sequences.

OBS: Note that thereisno TEST datafor one of the groups (1h9kal#27) and thus
you will have to exclude this group from the current analysis.



¢) Canyou improve the performance for the sequencesin a) by using pseudocounts,
i.e. explicitly adding counts to emissions that never has been observed in the
training data? What about for the sequences in b)? Explain what you observe.

Task 4
Given four sets of sequences:

A. Sequences used to build the HMM (i.e. the training set).

B. Seguences that match the group modeled by the HMM, but not in A (i.e. the
TEST groupsgivenin Task 3b)

C. Sequences from the same fold as sequences used to build the HMM, but not in A.

D. Sequencesfrom adifferent fold than the sequences used to build the HMM.

Obtain the probabilities that sequences in the different sets were generated by the given
HMM. Plot the distribution for each set. Explain what you see.

Task 5

Sequences with low homology to the training set will by nature be more difficult to
accurately aign to the HMM. One idea for improving the generalization capabilities of
the model is to use a different symbol set for describing the sequences by e.g. labeling
aminoacids by their physico-chemical properties. What is the motivation behind this
idea? Design a new encoding of the aminoacid sequence based on e.g. physico-chemical
properties or substitution frequencies. Translate the sequences to this new encoding and
repeat Task 3 and 4.

For properties see e.g. http://en.wikipedia.org/wiki/Aminoacid
Task 6

Could you use secondary structure information (helix, coil, sheet et cetera) to improve
your predictions? How would you incorporate such information into the HMM?

Could you use a multiple alignment consisting of the target and a set of related proteins
(without known structure) to improve the performance? How? Why would this result in
better performance?

Do you have other ideas for how to improve the performance of the HMMs?

Do you have any ideas for how to assemble complete protein structures given the
HMMs? What is the crucial point in order for thisto work?



Some M atlab-functions

You are given a set of Matlab functions to help with the implementation, consult the help
function for each of them:

read_group — Reads a group into Matlab

get_group_count — Returns the number of descriptors in the group

get_segments — Returns the segments of a sequence

get_sequence — Returns a sequence from the group

get_path — Returns “the” true path assuming sequentially numbered states where the
sequence isin an insert state (state 1) until the first segment. The first position in the first
segment is state 2, the next state 3, et cetera. The next insert is the next state in order and
so on until End. E.g.,, assume a sequence K long has two segments, two aa long
positioned at 3-4 and 7-8 respectively. The path returned would be 112344567777 .. (K
79).. 78 where 8isthe end state.



