Randomized algorithms

Torgeir R. Hvidsten

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Outline

- ► Randomized algorithms
- Greedy profile motif search
- ➢Gibbs sampler

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Randomized algorithms

- ► Randomized algorithms make random rather than deterministic decisions
- The main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time
- These algorithms are commonly used in situations where no correct polynomial algorithm is known

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Two types of randomized algorithms

- Las Vegas Algorithms always produce the correct solution
- Monte Carlo Algorithms do not always return the correct solution
- ➤Las Vegas Algorithms are always preferred, but they are often hard to come by

Motif finding problem

Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Profiles

- Let $\mathbf{s} = (s_1, \dots, s_t)$ be the set of starting positions for *l*-mers in our *t* sequences
- The substrings corresponding to these starting positions will form:
 - *t* x *l* alignment and
 - 4 x / profile P

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Scoring strings with a profile

- Prob(a | P) is defined as the probability that an *l*-mer a was created by the Profile P
- ➢ If a is very similar to the consensus string of P then Prob(a | P) will be high

1

> If **a** is very different, then $Prob(\mathbf{a} | \mathbf{P})$ will be low

$$Prob(\mathbf{a} \mid \mathbf{P}) = \prod_{i=1}^{l} p_{a_i}, i$$

where $p_{a_i, i}$ is the frequency of nucleotide a_i in position *i* in the profile

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Scoring strings with a profile

Given a profile: $\mathbf{P} =$

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string:

 $Prob(aaacct | \mathbf{P}) = 1/2 \ge 7/8 \ge 3/8 \ge 5/8 \ge 3/8 \ge 7/8 = .033646$

Probability of a different string:

 $Prob(atacag | P) = 1/2 \ge 1/8 \ge 3/8 \le 5/8 \le 1/8 \le 1/8 = .001602$

$\mathbf{P} = \begin{bmatrix} A & 1/2 & 7/8 & 3/\\ C & 1/8 & 0 & 1/\\ T & 1/8 & 1/8 & 0\\ G & 1/4 & 0 & 1/ \end{bmatrix}$ Given a sequence = ctataaacc	ble <i>l</i> -r r from a the highe P	ner sequer est pro	nce as ar bability
$\mathbf{P} = \begin{bmatrix} C & 1/8 & 0 & 1/\\ T & 1/8 & 1/8 & 0\\ \hline G & 1/4 & 0 & 1/ \end{bmatrix}$ Given a sequence = ctataaacc	/8 0	1/8	0
$\begin{array}{c cccc} T & 1/8 & 1/8 & 0\\ \hline G & 1/4 & 0 & 1/\\ \hline \\ Given a sequence = ctataaacc\\ probable \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/2 5/8	3/8	0
$\begin{array}{c c} G & 1/4 & 0 & 1/ \\ \hline Given a sequence = ctataaacc \\ probable \ /mer \end{array}$	0 0	1/4	7/8
Given a sequence = ctataaacc probable /-mer	/8 3/8	1/4	1/8
probable <i>l</i> -mer	cttacatc, f	ind th	e P-mos
1			

P-most probable *l*-mer

P-most probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	Prob(a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaa <mark>ccttac</mark> at	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Greedy profile motif search

Use P-most probable *l*-mers to adjust start positions until we reach a "best" profile

- 1) Select random starting positions
- 2) Create a profile ${\bf P}$ from the substrings at these starting positions
- 3) Find the **P**-most probable *l*-mer **a** in each sequence and change the starting position to the starting position of **a**
- Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

GreedyProfileMotifSearch Algorithm

GreedyProfileMotifSearch(**DNA**, t, n, l)

- 1 Randomly select starting positions $\mathbf{s} = (s_1, \dots, s_t)$ from **DNA**
- 2 *bestScore* $\leftarrow 0$
- 3 while Score(s, DNA) > bestScore
- 4 Form profile **P** from **s**
- 5 *bestScore* \leftarrow Score(**s**, *DNA*)
- 6 for $i \leftarrow 1$ to t
- 7 Find a **P**-most probable *l*-mer **a** from the i^{th} sequence
- 8 $s_i \leftarrow$ starting position of **a**
- 9 return bestScore

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif
- ➢ It is unlikely that the random starting positions will lead us to the correct solution at all
- ➢ In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Gibbs sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs
- However, we can improve the algorithm by introducing Gibbs sampling, an iterative procedure that discards one *l*-mer after each iteration and replaces it with a new one
- Gibbs Sampling proceeds more slowly and chooses new *l*-mers at random increasing the odds that it will converge to the correct solution

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

How Gibbs sampling works

- Randomly choose starting positions
 s = (s₁,...,s_t) and form the set of *l*-mers associated with these starting positions
- 2) Randomly choose one of the *t* sequences
- 3) Create a profile **P** from the other *t* -1 sequences
- For each position in the removed sequence, calculate the probability that the *l*-mer starting at that position was generated by P
- 5) Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4
- 6) Repeat steps 2-5 until there is no improvement
- T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Gibbs sampling: an example

Input:

15

- t = 5 sequences, motif length l = 8
 - 1. GTAAACAATATTTATAGC
 - 2. AAAATTTACCTCGCAAGG
 - 3. CCGTACTGTCAAGCGTGG
 - 4. TGAGTAAACGACGTCCCA
 - 5. TACTTAACACCCTGTCAA

Gibbs sampling: an example

3) Create profile *P* from *l*-mers in the remaining 4 sequences:

1	А	А	Т	А	Т	Т	Т	А
3	Т	С	А	А	G	С	G	Т
4	G	Т	А	А	А	С	G	А
5	Т	А	С	Т	Т	А	А	С
Α	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Т	А	А	А	Т	С	G	А

Gibbs Sampling: an Example

4) Calculate the *prob(a* | *P*) for every possible 8-mer in the removed sequence:

Strings Highlighted in Red	$prob(\mathbf{a} \mathbf{P})$
AAAĂTTŤAČĊTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	.000183
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

Gibbs Sampling: an Example								
 Create a distribution of probabilities of <i>l</i>-mers prob(a P), and randomly select a new starting position based on this distribution 								
To create a proper distribution, divide each probability $prob(a P)$ by the sum of probabilities over all position:								
Probability (Selecting Starting Position 1) $= 0.706$								
Probability (Selecting Starting Position 2) $= 0.118$								
Probability (Selecting Starting Position 8) = 0.176 T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II	21							

Gibbs sampling: an example						
Assume v probabilit new subs	ve select the substring with the highest by – then we are left with the following trings and starting positions					
s ₁ =7	GTAAACAATATTTATAGC					
s ₂ =1	AAAATTTACCTCGCAAGG					
s3=9	CCGTACTGTCAAGCGTGG					
s ₄ =5	TGA <mark>GTAATCGA</mark> CGTCCCA					
s ₅ =1	TACTTCAC ACCCTGTCAA					
T.R. Hvidsten: 1MB3	04: Discrete structures for bioinformatics II	22				

Gibbs sampling: an example

6) We iterate the procedure again with the above starting positions until we cannot improve the score any more

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Gibbs sampler in practice

- Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach)
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs
- Needs to be run with many randomly chosen seeds to achieve good results

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

24

where p_{rj} is the frequency of nucleotide r in position j and b_r is the background frequency of r

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

25