

Hidden Markov models

- ➢ Applications: Sequence alignment, gene detection et cetera
- ➢ Originated in speech recognition

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

CG-islands

- ➢ Given 4 nucleotides: probability of occurrence is ~ 1/4. Thus, probability of occurrence of a dinucleotide is ~ 1/16.
- ➢ However, the frequencies of dinucleotides in DNA sequences vary widely.
- ➤ In particular, CG is typically underepresented (frequency of CG is typically < 1/16)</p>

- CG is the least frequent dinucleotide because C in CG is easily *methylated* and has the tendency to mutate into T afterwards
- However, the methylation is suppressed around genes in a genome. So, CG appears at relatively high frequency within these CG islands
- So, finding the *CG* islands in a genome is an important problem (gene finding)

CG-islands and the "Fair Bet Casino"

- ➢ The CG islands problem can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail
- The Fair coin will produce Heads and Tails with the same probability 1/2
- The **B**iased coin will produce **H**eads with prob. $\frac{3}{4}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

The "Fair Bet Casino" (cont'd)

Thus, we define the probabilities:

 $-P(H|F) = P(T|F) = \frac{1}{2}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

- $-P(H | B) = \frac{3}{4}, P(T | B) = \frac{1}{4}$
- -The crooked dealer changes between Fair and Biased coins with probability 0.1

The Fair Bet Casino problem

- > Input: A sequence $\mathbf{x} = x_1 x_2 x_3 \dots x_n$ of coin tosses (either *H* or *T*) made by two possible coins (*F* or *B*)
- ▶ Output: A sequence $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_m$, with each π_i being either *F* or *B* indicating that x_i is the result of tossing the Fair or Biased coin, respectively
- Problem: Any observed outcome of coin tosses could have been generated by any sequence of states!

P(x|fair coin) vs. P(x|biased coin)

- $P(\mathbf{x} | \text{ fair coin}) = P(x_1 \dots x_n | \text{ fair coin}) = \Pi_{i=1,n} p(x_i | \text{ fair coin}) = (1/2)^n$
- $P(\mathbf{x}| \text{ biased coin}) = P(x_1...x_n| \text{ biased coin}) = \Pi_{i=1,n} p(x_i| \text{ biased coin}) = (3/4)^k (1/4)^{n-k} = 3^k/4^n$ where k is the number of **H**eads in **x** (and *n-k* is the number of **T**ails)

HMM parameters

 Σ : set of emission characters

 $\Sigma = \{H, T\}$ for coin tossing $\Sigma = \{A, C, G, T\}$ for the CG-island problem

Q: set of hidden states, each emitting symbols from Σ Q={F,B} for coin tossing Q={CG-island, not CG-island} for the CGisland problem

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

HMM Parameters (cont'd)

 $A = (a_k): a |Q| x |Q| matrix of probability of changing from state k to state l - transition probabilities$

 $E = (e_k(b)): a |Q| x |\Sigma| matrix of probability of$ emitting symbol b while being in state k- emission probabilities

$P(x,\pi)$ Calculation

 $P(x,\pi) = P(x | \pi) P(\pi)$: Probability that sequence *x* was generated by the path π :

$$P(\mathbf{x}, \boldsymbol{\pi}) = P(\pi_0 \rightarrow \pi_1) \cdot \prod_{i=1}^n P(x_i \mid \pi_i) \cdot P(\pi_i \rightarrow \pi_{i+1})$$
$$= a_{\pi_0, \pi_1} \cdot \prod_{i=1}^n e_{\pi_i} (x_i) \cdot a_{\pi_b, \pi_{i+1}}$$
$$= \prod_{i=0}^n e_{\pi_{i+1}} (x_{i+1}) \cdot a_{\pi_b, \pi_{i+1}}$$

where π_0 and π_{n+1} are fictitious initial and terminal states *begin* and *end* TR Hundstern (MR304: Discrete structures for bioinformatics II 24

to solve the *Decoding Problem* > Every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a

path in the graph

> The only valid direction in the graph is *eastward*

Building an edit graph for the

Decoding problem

Andrew Viterbi used the Manhattan grid model

This graph has $|Q|^2(n-1)$ edges

Decoding problem and Dynamic programming

Define $s_{k,i}$ as the probability of emitting the prefix $x_1 \dots x_i$ and reaching the state k

 $s_{l,i+1} = \max_{k \in \mathcal{Q}} \{s_{k,i} : \text{weight of edge between } (k,i) \text{ and } (l,i+1) \} =$

 $\max_{k \in \mathcal{Q}} \{ s_{k,i} \cdot a_{kl} \cdot e_l(x_{i+1}) \} =$

$$e_l(x_{i+1}) \cdot \max_{k \in \mathcal{O}} \{s_{k,i} \cdot a_{kl}\}$$

Decoding problem (cont'd)

- ► Initialization:
- $-s_{begin,0} = 1$ - $s_{k,0} = 0$ for $k \neq begin$.

Let π^* be the optimal path. Then,

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

$$P(\mathbf{x}, \boldsymbol{\pi}^*) = \max_{k \in O} \{s_{k,n} \cdot a_{k,end}\}$$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

39

Forward-backward problem

Given: a sequence of coin tosses generated by an HMM

Goal: find the probability that the dealer was using a biased coin at a particular time

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Forward algorithm

Define f_{k,i} (forward probability) as the probability of emitting the prefix x₁...x_i and reaching the state π = k
 The recurrence for the forward algorithm:

/13

$$f_{k,i} = e_k(x_i) \cdot \sum f_{l,i-1} \cdot a_{lk}$$

Remember the Viterbi algorithm:

$$s_{l,i+1} = e_l(x_{i+1}) \cdot \max_{k \in O} \{s_{k,i} \cdot a_{k}\}$$

Backward-forward algorithm

The probability that the dealer used a biased coin at any moment *i*:

$$P(\pi_{i} = k | x) = \frac{P(x, \pi_{i} = k)}{P(x)} = \frac{f_{ki} \cdot b_{ki}}{P(x)}$$

where:

 $P(\mathbf{x}, \pi_i = k) = \sum_{\pi \text{ with } \pi_i = k} P(\mathbf{x}, \pi)$: the sum of probabilities of all paths with $\pi_i = k$ $P(\mathbf{x}) = \sum_{\pi} P(\mathbf{x}, \pi)$: the sum of probabilities over all paths

- ► Probability of sequence and path: - $P(\mathbf{x}, \pi) = P(\mathbf{x} | \pi) P(\pi) = \prod_{i} e_{\pi_{i+1}} (x_{i+1}) \cdot a_{\pi_{i}, \pi_{i+1}}$
- Viterbi gives the path π^* that maximizes $P(\mathbf{x}, \pi)$: - $s_{l,i+1} = e_l(\mathbf{x}_{i+1}) \cdot \max_{k \in \mathbb{Q}} \{s_{k,i} \cdot a_{k,i}\}$
- ► Forward algorithm sums the probability of \mathbf{x} over all paths: $- \sum_{\alpha} P(\mathbf{x}, \vec{\sigma}) = \sum_{\alpha} P(\mathbf{x} | \pi) P(\pi) = P(\mathbf{x})$ $- f_{k,l} = e_k(x_l) \cdot \sum_{l} f_{l,l}, a_{l,k}$
 - J.K,I "R("V"-1,J,I,I-I"")R
- Forward+backwards sums the probability of *x* over all paths with π_i = k - Σ_{xwinh π_i = k} P(x,π)

40

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Finding distant members of a protein family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test using e.g. BLAST
- However, they may have weak similarities with *many* members of the family
- The goal is to align a sequence to all members of the family at once
- Family of related proteins can be represented by their multiple alignment and the corresponding profile

Aligned DNA sequences can be represented by a *4*·*n* profile matrix reflecting the frequencies of nucleotides in every aligned position.

Protein family can be represented by a $20 \cdot n$ profile representing frequencies of amino acids.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

53

HMMs

- HMMs can also be used for aligning a sequence against a protein family
- Conserved positions in the family corresponds to *n* sequentially linked *match* states $M_p,...,M_n$ in the profile HMM
- HMMs handle gaps better than profiles do

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Building a profile HMM

- > Multiple alignment is used to construct the HMM model
- Assign each column to a Match state in HMM. Add Insertion and Deletion state
- Estimate the emission probabilities according to amino acid counts in columns
- Estimate the transition probabilities between *Match, Deletion* and *Insertion* states

Emission probabilities for insertions

Probability of emitting a symbol a at an insertion state I_i :

$$e_{Ii}(a) = p(a)$$

where p(a) is the frequency of the occurrence of the symbol *a* in all the sequences.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Profile HMM alignment

➤ Define $v_{j}^{M}(i)$ as the logarithmic likelihood score of the best path for matching $x_{j}...x_{i}$ to a profile HMM ending with x_{i} emitted by the state M_{i}

 $\succ v_{i}^{I}(i)$ and $v_{i}^{D}(i)$ are defined similarly

Making a collection of HMM for protein families

- Use Blast to separate a protein database into families of related proteins
- Construct a multiple alignment for each protein family
- Construct a profile HMM model and optimize the parameters of the model (transition and emission probabilities)
- Align the target sequence against each HMM to find the best fit between a target sequence and an HMM

62

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Pfam

- Pfam decribes protein domains
- Each protein domain family in Pfam has:
 - Seed alignment: manually verified multiple alignment of a representative set of sequences
 - HMM built from the seed alignment for further database searches
 - Full alignment generated automatically from the HMM
- The distinction between seed and full alignments facilitates Pfam updates
 - Seed alignments are stable resources
 - Full alignments can be updated with newly found amino acid sequences

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Pfam

Pfam uses a tool called HMMER with the following architecture:

HMM parameter estimation

- So far, we have (mostly) assumed that the transition and emission probabilities are known
- However, in most HMM applications, the probabilities are not known. It's very hard to estimate the probabilities.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

HMM parameter estimation problem

Given

HMM with states and alphabet (emission characters)

lndependent training sequences $x^1, \ldots x^m$

Find HMM parameters Θ (that is, $a_{kb} e_k(b)$) that maximize

$P(x^1, \ldots, x^m \mid \Theta),$

the joint probability of the training sequences.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Maximize the likelihood

 $P(x^{1}, ..., x^{m} | \boldsymbol{\Theta})$ as a function of $\boldsymbol{\Theta}$ is called the likelihood of the model

The training sequences are assumed independent, therefore

 $P(x^{1}, \ldots, x^{m} \mid \boldsymbol{\Theta}) = \boldsymbol{\Pi}_{i} P(x^{i} \mid \boldsymbol{\Theta})$

The parameter estimation problem seeks Θ that realizes

$$\max_{\Theta} \quad \prod_{i} P(x^{i} \mid \Theta)$$

In practice the log likelihood is computed to avoid underflow errors

Known paths for training sequences

- > CG islands are marked on training sequences
- One evening the casino dealer allows us to see when he changes dice
- ➤ A multiple alignment of the protein family is given

Unknown paths

- CG islands are not marked
- Do not see when the casino dealer changes dice
- A multiple alignment of the protein family is *not* given

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Known paths

 A_{kl} = # of transitions from state k to state l in the training sequences

 $E_k(b) = \#$ of times *b* is emitted from state *k* in the training sequences

Compute a_{kl} and $e_k(b)$ as maximum likelihood estimators:

$$a_{kl} = A_{kl} / \sum_{l' \in Q} A_{kl'}$$
$$e_k(b) = E_k(b) / \sum_{b' \in \Sigma} E_k(b')$$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Pseudocounts

- Some state *k* may not appear in any of the training sequences. This means $A_{kl} = 0$ for every state *l* and a_{kl} cannot be computed with the given equation
- To avoid this overfitting use predetermined pseudocounts r_{kl} and r_k(b).

 $A_{kl} = \#$ of transitions $k \rightarrow l + r_{kl}$

 $E_k(b) = \#$ of emissions of b from $k + r_k(b)$

The pseudocounts reflect our prior biases about the probability values

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Unknown paths: Viterbi training

<u>Idea</u>: use Viterbi decoding to compute the most probable paths for training sequences x

- Start with some guess for initial parameters
- Iterate :
 - Compute the most probable path π* for each x using the current parameters (Viterbi algorithm)
 Stop if no change in π*
 - Determine A_{kl} and $E_k(b)$ using the computed paths
 - Compute new parameters a_{kl} and e_k(b) using the same formulas as before

73

Unknown paths: Baum-Welch

Idea:

- 1. Guess initial values for parameters. art and experience, not science
- 2. Estimate new (better) values for parameters.
- 3. Repeat until stopping criteria is met. what criteria ?

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Better values for parameters

Would need the A_{kl} and $E_{k}(b)$ values but cannot count (the path is unknown) and do not want to use a most probable path

For all states k,l, symbol b and training sequence x

Compute A_{kl} and $E_k(b)$ as expected values, given the current parameters

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Notation

For any sequence of characters x emitted along some <u>unknown path</u> π , denote by $\pi_i = k$ the assumption that the state at position i(in which x_i is emitted) is k

Probabilistic setting for $A_{k,l}$

Given x^1, \ldots, x^m consider a discrete probability space with elementary events

 $\varepsilon_{k,l} = k \rightarrow l$ is taken in x^1, \dots, x^m "

For each x in $\{x^i, ..., x^m\}$ and each position i in x let $Y_{x,i}$ be a random variable defined by

 $Y_{x,i}(\varepsilon_{k,l}) = \begin{cases} 1, & \text{if } \pi_i = k \text{ and } \pi_{i+1} = l \\ 0, & \text{otherwise} \end{cases}$ Define $Y = \sum_x \sum_i Y_{x,i}$ random variable that counts # of times the event $\varepsilon_{k,l}$ happens in x^l, \dots, x^m . I.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 77

The meaning of A_{kl}

Let A_{kl} be the expectation of Y

 $E(Y) = \sum_{x} \sum_{i} E(Y_{x,i}) = \sum_{x} \sum_{i} P(Y_{x,i} = 1) =$ $\sum_{x} \sum_{i} P(\{\varepsilon_{k,l} \mid \pi_{i} = k \text{ and } \pi_{i+1} = l\}) =$ $\sum_{x} \sum_{i} P(\pi_{i} = k, \pi_{i+1} = l \mid x)$

Need to compute $P(\pi_i = k, \pi_{i+1} = l \mid x)$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Probabilistic setting for $E_k(b)$

Given x^1, \ldots, x^m consider a discrete probability space with elementary events

 $\varepsilon_{k,b} = "b$ is emitted in state k in x^{i}, \dots, x^{m} " For each x in $\{x^{i}, \dots, x^{m}\}$ and each position i in x let $Y_{x,i}$ be a random variable defined by

$$Y_{x,i}(\varepsilon_{k,b}) = \begin{cases} 1, & \text{if } x_i = b \text{ and } \pi_i = k \\ 0, & \text{otherwise} \end{cases}$$

Define $Y = \sum_{x} \sum_{i} Y_{x,i}$ random variable that counts # of times the event $\varepsilon_{k,b}$ happens in x^{1}, \dots, x^{m} . The meaning of $E_k(b)$

Let $E_k(b)$ be the expectation of Y

$$E(Y) = \sum_{x} \sum_{i} E(Y_{x,i}) = \sum_{x} \sum_{i} P(Y_{x,i} = 1) =$$

$$\sum_{x} \sum_{i} P(\{\varepsilon_{k,b} \mid x_{i} = b \text{ and } \pi_{i} = k\}) =$$

$$\sum_{x} \sum_{i} P(\{\varepsilon_{k,b} \mid x_{i} = b, \pi_{i} = k\}) = \sum_{x} \sum_{i} P(\pi_{i} = k \mid x)$$

$$\sum_{x} \{i|x_i=b\} \quad ((a_{k,b}+x_i-b,x_i-b)) \quad \sum_{x} \{i|x_i=b\}$$

Need to compute $P(\pi_i = k \mid x)$

Compute A_{kl} (1)

Prob $k \rightarrow l$ is taken at position i of x $P(\pi_i = k, \pi_{i+1} = l \mid x_1 \dots x_n) = P(x, \pi_i = k, \pi_{i+1} = l) / P(x)$

Compute P(x) using either forward or backward values We'll show that $P(x, \pi_i = k, \pi_{i+1} = l) = b_{li+1} \cdot e_l(x_{i+1}) \cdot a_{kl} \cdot f_{kl}$

Expected # times $k \rightarrow l$ is used in training sequences $A_{kl} = \sum_{x} \sum_{i} (b_{li+1} \cdot e_{i}(x_{i+1}) \cdot a_{kl} \cdot f_{ki}) / P(x)$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Compute A_{kl} (2)

$$\begin{split} P(\mathbf{x}, \pi_{i} = \mathbf{k}, \pi_{i+1} = \mathbf{l}) &= \\ P(\mathbf{x}_{1} \dots \mathbf{x}_{p}, \pi_{i} = \mathbf{k}, \pi_{i+1} = \mathbf{l}, \mathbf{x}_{i+1} \dots \mathbf{x}_{p}) &= \\ P(\pi_{i+1} = \mathbf{l}, \mathbf{x}_{i+1} \dots \mathbf{x}_{n} \mid \mathbf{x}_{1} \dots \mathbf{x}_{p}, \pi_{i} = \mathbf{k}) \cdot P(\mathbf{x}_{1} \dots \mathbf{x}_{p}, \pi_{i} = \mathbf{k}) = \\ P(\pi_{i+1} = \mathbf{l}, \mathbf{x}_{i+1} \dots \mathbf{x}_{n} \mid \pi_{i} = \mathbf{k}) \cdot f_{ki} = \\ P(\mathbf{x}_{i+1} \dots \mathbf{x}_{n} \mid \pi_{i} = \mathbf{k}, \pi_{i+1} = \mathbf{l}) \cdot P(\pi_{i+1} = \mathbf{l} \mid \pi_{i} = \mathbf{k}) \cdot f_{ki} = \\ P(\mathbf{x}_{i+1} \dots \mathbf{x}_{n} \mid \pi_{i+1} = \mathbf{l}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ P(\mathbf{x}_{i+2} \dots \mathbf{x}_{n} \mid \mathbf{x}_{i+1}, \pi_{i+1} = \mathbf{l}) \cdot P(\mathbf{x}_{i+1} \mid \pi_{i+1} = \mathbf{l}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ P(\mathbf{x}_{i+2} \dots \mathbf{x}_{n} \mid \pi_{i+1} = \mathbf{l}) \cdot e_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ P(\mathbf{x}_{i+2} \dots \mathbf{x}_{n} \mid \pi_{i+1} = \mathbf{l}) \cdot e_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{e}_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{e}_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ D(\mathbf{x}_{i+1} \dots \mathbf{x}_{n} \mid \pi_{i+1} = \mathbf{l}) \cdot e_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{e}_{\mathbf{l}}(\mathbf{x}_{i+1}) \cdot \mathbf{a}_{kl} \cdot f_{ki} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \\ D(\mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} = \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} + \\ D(\mathbf{x}_{i+1} \cdot \mathbf{x}_{i+1} - \mathbf{x}_{i+1} \cdot \mathbf{x}_{i+$$

Compute $E_k(b)$ Prob x_i of x is emitted in state k $P(\pi_i = k \mid x_1...x_n) = P(\pi_i = k, x_1...x_n)/P(x)$ $P(\pi_i = k, x_1...x_n) = P(x_1...x_p\pi_i = k, x_{i+1}...x_n) =$ $P(x_{i+1}...x_n \mid x_1...x_p\pi_i = k) \cdot P(x_1...x_p\pi_i = k) =$ $P(x_{i+1}...x_n \mid \pi_i = k) \cdot f_{ki} = b_{ki} \cdot f_{ki}$ Expected # times b is emitted in state k $E_k(b) = \sum_x \sum_{i:x_i=b} (f_{ki} \cdot b_{ki})/P(x)$

The Baum-Welch algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Forward for each x
- 2. Backward for each x
- 3. Calculate $A_{kb} E_k(b)$
- 4. Calculate new $a_{kb} e_k(b)$
- 5. Calculate new log-likelihood
- Until log-likelihood does not change much

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Baum-Welch analysis

Log-likelihood is increased by iterations Baum-Welch is a particular case of the EM (expectation maximization) algorithm

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics

Convergence to local maximum. Choice of initial parameters determines local maximum to which the algorithm converges

22