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Markov models

» Application: Classification

» Task: Model a set of sequences of unequal
length probabilistically.

ATGCT ~— Unequal length. PSSM won’t do it!

GTGCTAC

GCTAC Sequences from N letter alphabet,
could be nucleotides {A,G,C,T},

ATGCTGG amino acids {VPA, L, ...},
codons {AUG, GAC, ...} et cetera.
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Oth order solution

> Assign a probability to each letter (e.g. its
frequency). N parameters needed

» Assume independent observations:
— P(A|GCTG) = P(A)
» Problem:
— P(AGCT) = P(A)P(G)P(C)P(T) =
P(GTCA), i.e. permutation invariant
— Order carries a lot of information in
biology, e.g.
— GC-islands
— Hydrophobic core vs hydrophilic surface
of globular proteins
— Transmembrane proteins
— et cetera
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I st order solution

Assume each letter depends on the preceding.
—P(AGTCGT) =
P(AYP(G | A)P(T'|G)P(C| PG | OP(T|G)
— No longer permutation invariant.
— N x N parameters (+ NN for start probabilities)

— Note: Higher order models often intractable

— kth order model requires N* parameters
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Graphical representation
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Summary: Marko models

» 1st order Markov models incorporates 1st order dependencies
(ie. PX|Y))
» Can be represented as a weighted, directed graph.
» Application:
— Comparing two sequence families:
— Choose architecture(s)
— Estimate P(XY) for all XY in alphabet for each of the sequence families

— For classification, calculate the probability of each of the models generating,
the sequence

— Practical note: For long sequences numerical overflow is a problem. Solution:
work with logarithms.
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Hidden Markov models

» Applications: Sequence alignment, gene
detection et cetera

» Originated in speech recognition
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CG-islands

» Given 4 nucleotides: probability of occutrence is
~ 1/4. Thus, probability of occutrence of a
dinucleotide is ~ 1/16.

» However, the frequencies of dinucleotides in
DNA sequences vary widely.

» In particular, CG is typically underepresented
(frequency of CG is typically < 1/16)
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Why CG-islands?

» CG is the least frequent dinucleotide because C
in CG is easily methylated and has the tendency to
mutate into T afterwards

» Howevert, the methylation is suppressed around
genes in a genome. So, CG appears at relatively
high frequency within these CG islands

» So, finding the CG islands in a genome is an
important problem (gene finding)
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CGe-islands and the “Fair Bet Casino”

»The CG islands problem can be modeled after a
problem named “7The Fair Bet Casino”

»The game is to flip coins, which results in only
two possible outcomes: Head or Tail

» The Fair coin will produce Heads and Tails with
the same probability V2

»The Biased coin will produce Heads with prob. %
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The “Fair Bet Casino” (contd)

Thus, we define the probabilities:
-PH|F) =P(T|F) ="
—PH|B) = %, P(T'|B) = "4
—The crooked dealer changes between Fair and
Biased coins with probability 0.1
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The Fair Bet Casino problem

» Input: A sequence x = x,x,x;3...x, of coin tosses
(either H or T) made by two possible coins (IF or B)

» Output: A sequence 7 = 7, 7, 7;... 7,, with each z;

being either I or B indicating that x; is the result of

tossing the Fair or Biased coin, respectively

» Problem: Any observed outcome of coin tosses could
have been generated by any sequence of states!
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P(x|fair coin) vs. P(x|biased coin)

Suppose first that the dealer never changes coins

Some definitions:

— P(x|fair coin): prob. of the dealer using the
F coin and generating the outcome x

— P(x|biased coin): prob. of the dealer using
the B coin and generating outcome x
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P(x|fair coin) vs. P(x|biased coin)

» P(x| fait coin)=P(x;...x,| fait coin) =

M,y,,p (] fair coin)= (1/2)"

» P(x|biased coin)= P(x;...x, | biased coin)=
I1,_,,p (x;|biased coin)=(3/4)(1/4)*= 3k/4"
where £ is the number of Heads in x (and 7-£ is
the number of Tails)
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Log-odds ratios

We define log-odds ratio as follows:

log,(P(x| fair coin) / P(x|biased coin))

Log-odds value

Biased coin most likely
used
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Computing log-odds ratio in sliding windows

XXX 050X B X,

Consider a sliding window of the outcome sequence,
find the log-odds for this short window

Disadvantages:
» the length of CG-island is not known in advance

» different windows may classify the same position
differently
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Hidden Markov Model (HMM)

» Can be viewed as an abstract machine with & hidden states
that emits symbols from an alphabet X

» Each state has its own probability distribution, and the
machine switches between states according to this
probability distribution

» While in a certain state, the machine makes 2 decisions:
— What state should I move to next?

— What symbol - from the alphabet X - should I emit?
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HMM for Fair Bet Casino

HMM model for the Fazir Bet Casino Problem
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HMM for Fair Bet Casino (contd)

HMM model for the Fazir Bet Casino Problem
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HMM for Fair Bet Casino (contd)
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HMM model for the Fazr Bet Casino Problem
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HMM for Fair Bet Casino (contd)

HTH

HMM model for the Fair Bet Casino Problem
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Why “Hidden?

» Observers can see the emitted symbols of an
HMM but have no ability to know which state
the HMM is currently in

> Thus, the goal is to infer the most likely hidden
states of an HMM based on the given sequence
of emitted symbols.
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HMM parameters

>.: set of emission characters
X = {H, T} for coin tossing
2 = {A, C, G, T} for the CG-island problem

Q: set of hidden states, each emitting symbols from X
Q={F,B} for coin tossing
Q={CGe-island, not CG-island} for the CG-
island problem
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HMM Parameters (contd)

A= (ay):a |Q| x | Q| matrix of probability of
changing from state £ to state /

- transition probabilities
E = (e, (h):a | Q| x | 2| matrix of probability of

emitting symbol 4 while being in state £

- enmission probabilities
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HMM for Fair Bet Casino

The Fair Bet Casino in HMM terms:
3 ={0,1} — 0 for Tails and 1 for Heads
Q = {F,B} — F for Fair & B for Biased coin
Transition Probabilities 4 ~ Emission Probabilities E

Fair Biased Tails(0) | Heads(1)

Fair =09 Jagp=0.1 Elie eﬁ(o) = "1-'(7) =
Biased |ap =01 |ap=09 Biased | ep0) = s | ey(1) = %
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HMM for Fair Bet Casino (contd)

HMM model for the Fazir Bet Casino Problem
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Hidden Paths

» A path m = z,... r,in the HMM is defined as a sequence

of states
» Consider path 7 = FFFBBBBBFFF and sequence x =
01011101001
Probability that x; was emitted from state 7z
X o 1 0 1 1 1 0 1 0 0 1
n FFFBDBIBUBDBTFTFF
P(x|m;) Vo Vo Vo 3 Y% 3% Va 3 V2 V2 V2

Py 2m) VY2 % %0 ‘e %o %o %o *ho Yo %o *ho

Transition probability from state n, to state m;
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P(x,mm) Calculation

P(x,m)=P (x| nt) P(m): Probability that sequence x was
generated by the path 7

P(x,7) = P(zy— 7)) - l.f[,P(Xz‘| )+ Pla;— 74q)

n
= Az, 7 'Zl.;lieﬂz' () @z

7
- Eoeﬂiﬂ (Xiﬂ) YAz g
whete 7,and 7, are fictitious initial and terminal

states begin and end
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Decoding problem

» Goal: Find an optimal hidden path of states
given observations

> Input: Sequence of observations x = x;,...x,
generated by an HMM: M(Z, O, A, E)

» Output: A path that maximizes P(x,7) over all
possible paths 7
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Building an edit graph for the
Decoding problem
» Andrew Viterbi used the Manhattan gtid model
to solve the Decoding Problem

» Every choice of 7 = z,... z,corresponds to a
path in the graph

» The only valid direction in the graph is eastward
»This graph has | Q|?(#-1) edges
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Edit graph for Decoding problem
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Decoding problem vs. Alignment problem

Valid directions in the Valid directions in the decoding
alignment problem problem.
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Decoding problem: reformulated

» The Decoding probiem is reduced to finding a
longest path in the directed acyclic graph (DAG)

» Notes: the length of the path is defined as the
product of its edges’ weights, not the su.
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Decoding problem (cont'd)

» Every path in the graph has the probability P(x,7)

> The Viterbi algotithm finds the path that

maximizes P(x;z7) among all possible paths

> The Viterbi algotithm runs in O(z|Q|?) time
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Weights of edges

o " TSe
(k, i) (1, i+1)

The weight wis given by:

277
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Weights of edges

n
P(X’”) = I}:g Ti+1 (Xi+1)' a T, Wit
o e
(k. 1) (1. i+1)

The weight wis given by:

P?
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Weights of edges

ithterm = ey (X44). @ 7, 2,
o " e
(k, i) (l,i+1)
The weight wis given by:

=]
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Weights of edges
thterm = ¢z (i) - @ mymy = G OG) - ay Jor 7=k 7=/
o e
(k, i) @, i+1)

The weight » = ¢,(x;,,) . ay
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Decoding problem and Dynamic programming

Define s, ; as the probability of emitting the prefix x;...x; and reaching
the state £
Spipg = max, o) {5, - weight of edge between (,4) and (4i+1) }=

max, ¢ {00 ayy e (i) b=

¢/ (x;4y) - Max, 0 {f/e,z ’ ”/e/}
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Decoding problem (contd)
» Initialization:
- thgiﬂ,o =1

— 510 = 0 for & # begin.
» Let 7" be the optimal path. Then,

P(X’”*) = maxk (&N {‘r»é,ﬂ . ﬂ,é,md}
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Viterbi algorithm

» The value of the product can become extremely
small, which leads to overflowing

»To avoid overflowing, use log value instead.

Spi1= log e(x;y ;) + max 0 {5y +log(ay)}

Remember: log (ab) = log a + log b
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Forward-backward problem

Given: a sequence of coin tosses generated by

an HMM

Goal: find the probability that the dealer was
using a biased coin at a particular time

T.R. Hvidsten: 1IMB304: Discrete structures for bioinformatics |1 42

Forward algorithm
» Define f, ; (forward probability) as the probability of

emitting the prefix x,...x; and reaching the state 7 = £

» The recurrence for the forwatd algorithm:
Joi = elx) - 2 o ag

Remember the Viterbi algorithm:

Syt = ¢ (i) - maxg o {5y agt
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Backward algorithm

» Howevet, forward probability is not the only factor
affecting P(m; = k|x)

» The sequence of transitions and emissions that
the HMM undergoes between 7;, ; and 7, also
affect P(w; = k|x)

forward  x; backward
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Backward algorithm (contd)

» Define backward probability by ; as the probability
of being in state z; = 4 and emitting the s#ffix

Xipg. Xy,

» The recurrence for the backward algorithm:

by;= /Z eXin) - byivr - ay
€o

Backward-forward algorithm

The probability that the dealer used a

biased coin at any moment i:
Pl =k fu- by
P(x) P(x)

P(r, = klx) =

where:

Pl 7z, =k)= 3,

7 with 77 = &

P(X,i[): the sum of probabilities of all paths with 7=4
P(x) = 2 P(x,7): the sum of probabilities over all paths
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Summary Summary
» HMM defined by » Every layer 7 emit one @

— X set of emission characters
— Q: set of hidden states
— Transition probabilities
— Emission probabilities
» Finding most probable path for a given sequence can
be done with the Viterbi algorithm
» The total probability of the sequence (for matching)
calculated with the forward algorithm
» Probability of being in a state at a given time requites
the backward algorithm in addition
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symbol x;

QZ .
» Every path from layer 7to 2
layer # has probability Q
P(x,7)
Q
» Note that the path tells
us which hidden state in
layer 7 that emitted x;
T.R. Hvidsten: 1IMB304: Discrete structures for bioinformatics Il

48

12



Summary

» Probability of sequence and path:
— Pxm) = P(x|m) P(m) = T ¢ g (%ie)) * @z,
> Viterbi gives the path 7" that maximizes P(x,7):

T S T e () T maxg ) {5 g

» Forwatd algorithm sums the probability of x over all paths:
— EPxm =2 P(x|m) P(m) = P(x)
= o= el) - X - a

» Forward+backwards sums the probability of x over all paths
with 7; = &
- x P(x7)

7with 7; = £
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Summary
» A path n = z,... z,in the HMM is defined as a sequence
of states
» Consider path 7 = FFFBBBBBFFF and sequence x =
01011101001
Probability that x; was emitted from state 7z
X 0o 1 0 1 1 10 10 0 1
m FFFBBBBBFFF
P(xim) Vo V2 Va2 % Y Y Va Y4 V2 V2

Py >m) V2 % %0 Yo %0 %o %o %o Yo %o %o

Transition probability from state n,, to state m;
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Summary

HMM model for the Fazir Bet Casino Problem
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Finding distant members of a protein family

» A distant cousin of functionally related sequences in a
protein family may have weak pairwise similarities with
each member of the family and thus fail significance
test using e.g. BLAST

» However, they may have weak similarities with many
members of the family

» The goal is to align a sequence to all members of the
family at once

» Family of related proteins can be represented by their
multiple alignment and the corresponding profile
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Profile representation of protein families HMMs
Aligned DNA sequences can be represented by a »HMMs can also be used for aligning a

4+ n profile matrix reflecting the frequencies . . .
sequence against a protein famﬂy

of nucleotides in every aligned position. - . .
Al7 14 0 0 7 7 0 o0 » Conserved positions in the family

T4 72 0 0 0 .4 .14 56 corresponds to # sequentially linked match
Gl.4 14 86 44 0 .14 0 0 states M,,...,M, in the profile HMM

C|l 0 0 .14 56 .28 0 86 .14
»HMMs handle gaps better than profiles do

Protein family can be represented by a 20 # profile
representing frequencies of amino acids.
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Building a profile HMM Profile HMM

» Multiple alignment is used to construct the HMM model

» Assign each column to a Mateh state in HMM. Add Insertion and
Deletion state

» Estimate the emission probabilities according to amino acid
counts in columns

> Estimate the transition probabilities between Match, Deletion and
Tnsertion states

Match state 3:

Modeled as insertions A profile HMM

Transitions from match state 9 to 10
Ao 1o = 2/ 8

ayopio = 3/8
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Note: penalties in HMMs

Different penalties for opening a gap and extending
the gap is naturally implemented in HMM

— log(ay)+log(ay,) = gap initiation penalty
— log(ay;) = gap extension penalty
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Emission probabilities for insertions

Probability of emitting a symbol  at an
insertion state [

ej(a) = p(a)
where p(a) is the frequency of the

occurtrence of the symbol # in all the
sequences.
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Profile HMM alignment
» Define VM/ () as the logatithmic likelihood score

of the best path for matching x,...x; to a profile
HMM ending with x; emitted by the state ]V[/

> 1',() and o7, (i) are defined similarly

Profile HMM alignment: Dynamic programming

M (-1) + loglang 1)
M) = log () + maxe <t (i1) + log(ay ;)
P4 (i-1) + log(apy ;)

M(i-1) + logan, 1)
1,’1/(1) = log (erfx))  +  max Z’I/(i-7) + log(ay, 1)

P (i-1) + log(ap, 1)

1/”/,,(1') + /(/g(a‘u/,,, D)

D) = i G
i) = max '4(4) + log(ar, p)
.
P-4(i) + log(apy., by
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Profile HMM

A profile HMM
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Making a collection of HMM for
protein families

» Use Blast to separate a protein database into families of
related proteins

» Construct a multiple alignment for each protein family

» Construct a profile HMM model and optimize the
parameters of the model (transition and emission
probabilities)

» Align the target sequence against each HMM to find the best
fit between a target sequence and an HMM
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Pfam

» Pfam dectibes protein domains

» Each protein domain family in Pfam has:

— Seed alignment: manually verified multiple alignment of a
representative set of sequences

— HMM built from the seed alignment for further database
searches

— Full alignment generated automatically from the HMM
» The distinction between seed and full alignments
facilitates Pfam updates
— Seed alignments are stable resources
— Full alignments can be updated with newly found amino
acid sequences
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Pfam

Pfam uses a tool called HMMER with the following
architecture:
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Scoring matches

Given a protein sequence x and an HMM, what is a
significant score?
— The score from the forward algorithm: p"= /og p(x)
— Generate 1000 random sequences and score them:
Prond 1> Prand 25 > Prand 1000

— Fit a distribution to the random scores and calculate the false
discover rate (fdr)

— E-score = fdr - Size of query database (the expected number of false
positive hits)

Distribution
for random, p fdr
scores
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HMM parameter estimation

> So far, we have (mostly) assumed that the
transition and emission probabilities are known

» However, in most HMM applications, the
probabilities are not known. It’s very hard to
estimate the probabilities.
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HMM parameter estimation problem

Given

»HMM with states and alphabet (emission
characters)

»Independent training sequences x7, ... x”

Find HMM parameters @ (that is, a,, ¢,(b)) that

maximize
P, o, x| O),
the joint probability of the training sequences.
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Maximize the likelihood
P(x!, ..., x” | ©)as a function of @ is called the
likelihood of the model

The training sequences are assumed independent,
therefore

P, .., x| ©) =11 P(x | ©)
The parameter estimation problem seeks @ that realizes
max HP(xi | ®)
0

In practice the log likelihood is computed to avoid
underflow errors
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Two situations

Known paths for training sequences
» CG islands are marked on training sequences

» One evening the casino dealer allows us to see when he
changes dice

» A multiple alignment of the protein family is given

Known paths
A= # of transitions from state £ to state /in the
training sequences

E,(b) = # of times 4 is emitted from state £ in the
training sequences

Compute @,,and ¢,(h) as maximum likelihood

Unknown paths estimators:
» CG islands are not marked ay =4y ! E Ay
» Do not see when the casino dealer changes dice fee
. . . o . _ ,
» A multiple alignment of the protein family is not given e (b)=E, (B)/ § £
bex.
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Pseudocounts

» Some state £ may not appear in any of the training
sequences. This means 4,;, = 0 for every state /and
a,cannot be computed with the given equation

» To avoid this overfitting use predetermined
pseudocounts 7, and 7,(b).

Ay = # of transitions £/ + r,,
E,(b) = # of emissions of & from £ + r,(b)

» The pseudocounts reflect our prior biases about
the probability values
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Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most probable
paths for training sequences x

» Start with some guess for initial parameters
» lterate :

— Compute the most probable path 7* for each x using
the current parameters (Viterbi algorithm)
— Stop if no change in 7*
— Determine A4, and E,(b) using the computed paths
— Compute new parameters ;,and e,(b) using the same
formulas as before
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Viterbi training analysis

» The algotithm converges precisely
— There are a finite number of possible paths
— New parameters ate uniquely determined by the current 7*
— There may be several paths for x with the same probability, hence

to decide convergence one must compare the new 7* with all
previous paths having the highest probability

» Does not maximize the likelihood I7; P(x' | ©) but the
contribution to the likelihood of the most probable path I7;
Px'| O, n*)

» In general performs less well than Baum-Welch

T

o
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Unknown paths: Baum-Welch

Idea:

1. Guess initial values for parameters.
art and experience, not science

2. Estimate new (better) values for parameters.
how ?

3. Repeat until stopping criteria is met.

what criteria ?
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Better values for parameters

Would need the A, and E,(b) values but cannot
count (the path is unknown) and do not want to use a

most probable path

For all states 4,4, symbol & and training sequence x

Compute Ay, and E,(b) as expected values,
given the current parameters
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Notation

For any sequence of characters x emitted
along some unknown path 7, denote by 7, =
k the assumption that the state at position 7
(in which x; is emitted) is £
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19



Probabilistic setting for A,

Given 5, ... ,x” consider a discrete probability space
with elementary events

&, = & —>1is taken in &7, ..., x"7
For each xin {x,...,x”} and each position 7in x let Y.,
be a random variable defined by

Lif o, =k and 7, =1
0, otherwise

Y (&)= {

Define Y = 2_2 Y. random variable that counts # of
times the event ¢, , happens in x7,...,x".

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I1 7

The meaning of A,

Let 4,,be the expectation of Y

Em - ZX Zf E(YX;) = Zx Zz' P(Yx,z = 7)
22, PRey, | ;y=kand 7y, = 1}) =
ZZ P =k mpy =1 %)

Need to compute P(z; = &, 7., =/ | x)

T.R. Hvidsten: 1IMB304: Discrete structures for bioinformatics |1
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Probabilistic setting for E,(b)

Given x/, ... ,x” consider a discrete probability
space with elementary events

&, = “bis emitted in state £in x/, ... %" 7

For each x in {x7,...,»”} and each position 7in x let
Y, be a random variable defined by

Lif x,=bandrx. =k
Y (&)=

0, otherwise
Define Y = > = Y random variable that counts #
of times the event ¢, , happens in x7,...,x".
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The meaning of E,(b)

Let E,(b) be the expectation of Y’

E(Y) = ZxZiE(Yx,) = ZxZiP(Yxi: 7) =
22 Pegy | ;= band 7, = k}) =

Pllegs 1% =bom, kD= " Pl =k0)

X i=b} X iby=b}

Need to compute P(z; = £ | x)
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Computing new parameters

Consider x = x;...x, training sequence

Concentrate on positions 7and 7+7

L " i+1)
% kl
Xy X & x41)
X‘ XM

Use the forward-backward values:

Joi = Plxy o, 7= k)
by = Plciey o, | 1, = K)

Compute A, (I)

Prob £ — /is taken at position 7 of x
Pl; =k 70y = 1| p0x,) = Plos, 7, = &y 11 = 1) | P(x)

Compute P(x) using either forward or backward values
We'll show that Plx, 7, = & 7y = 1) = by -efxiy) ~ap [

Expected # times £ — /is used in training sequences

Ay =2, 2 (byey efXiny) "y fo) | Px)
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Compute A, (2) Compute E,(b)
ki k
Pl =k 73y =) = Prob x; of x is emitted in state £
Plocyonony ;= & g = b Xypqennx,) = P,= k| x;...x,) = P(x, = k, x,...x,)/ P(x)
Pz =4 Xy, | xp0x 1= R)-Ply...xym; =)=
e P(r; = &y xpenux,) = Pyl = Xy e aX,) =
Plry =4 Xpuqonn, | 7= K) for = P ! s sz ! — )=
Py, | 5= ks iy = - Play = | 7= R)f = Ciet 2y | g7, = K) - Py 2,7, = K) =
Pl yenney | oy = Dy fo = Plxygeex, | 1= R) " Jop = by fo
_ _ _ Expected # times 4 is emitted in state
Plcipeenny | Xupy Ty =) Ployyy | Ty = 1) ragy fig = p # £
Pl o, | 7o, = 1) cefx.,) a, .. =
(Kiezeee2y | Tivy = ) vefist) g fi Ek(b)=§ § (fki'bki)/P(x)
byy-ef>iy) ~ag i .
x ix;=b
T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics Il 83 T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics Il 84

21



Finally, new parameters

a,=A, /ZAk .
-

e(b)=E,(b)/ ) E (V)

Can add pseudocounts as before.
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Stopping criteria

Cannot actually reach maximum (optimization of
continuous functions)

Therefore need stopping criteria
@ Compute the log likelihood of the model for
current ® Z log p(x | @)

Compare with previous log likelihood
Stop if small difference
2 Stop after a certain number of iterations
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The Baum-Welch algorithm

Initialization:
Pick the best-guess for model parameters
(ot arbitrary)
Iteration:
1. Forward for each x
2. Backward for each x
3. Calculate A,, E.(b)
4. Calculate new a;, ¢,(b)
5. Calculate new log-likelihood
Until log-likelihood does not change much
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Baum-Welch analysis

@ Log-likelihood is increased by iterations

Baum-Welch is a particular case of the EM
(expectation maximization) algorithm

& Convergence to local maximum. Choice of initial
parameters determines local maximum to which
the algorithm converges
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