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Hidden Markov models
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Torgeir R. Hvidsten

Markov models

Application: Classification
Task: Model a set of sequences of unequal 
length probabilistically.
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ATGCT

GTGCTAC

GCTAC

ATGCTGG

Unequal length. PSSM won’t do it!

Sequences from N letter alphabet, 
could be nucleotides {A,G,C,T}, 
amino acids {V,P,A, L, …}, 
codons {AUG, GAC, …} et cetera.

0th order solution
Assign a probability to each letter (e.g. its 
frequency). N parameters needed
Assume independent observations:
− P(A|GCTG) = P(A)

Problem:
− P(AGCT) = P(A)P(G)P(C)P(T) = 
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( ) ( ) ( ) ( ) ( )
P(GTCA), i.e. permutation invariant

− Order carries a lot of information in 
biology, e.g.
− GC-islands
− Hydrophobic core vs hydrophilic surface 

of globular proteins
− Transmembrane proteins
− et cetera

1st order solution

Assume each letter depends on the preceding.
−P(AGTCGT) = 

P(A)P(G|A)P(T|G)P(C|T)P(G|C)P(T|G)
−No longer permutation invariant
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No longer permutation invariant.
−N x N parameters (+ N for start probabilities)
−Note: Higher order models often intractable

−kth order model requires Nk parameters
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Graphical representation 
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Summary: Marko models

1st order Markov models incorporates 1st order dependencies 
(i.e. P(X|Y) )
Can be represented as a weighted, directed graph.
Application:
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Application:
− Comparing two sequence families:

− Choose architecture(s)
− Estimate P(X|Y) for all X,Y in alphabet for each of the sequence families
− For classification, calculate the probability of each of the models generating 

the sequence
− Practical note: For long sequences numerical overflow is a problem. Solution: 

work with logarithms.

Hidden Markov models

Applications: Sequence alignment, gene 
detection et cetera
Originated in speech recognition
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CG-islands

Given 4 nucleotides: probability of occurrence is 
~ 1/4.  Thus, probability of occurrence of a 
dinucleotide is ~ 1/16.
However the frequencies of dinucleotides in
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However, the frequencies of dinucleotides in 
DNA sequences vary widely.
In particular, CG is typically underepresented 
(frequency of CG is typically < 1/16)
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Why CG-islands?

CG is the least frequent dinucleotide because C
in CG is easily methylated and has the tendency to 
mutate into T afterwards
However the methylation is suppressed around
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However, the methylation is suppressed around 
genes in a genome.  So, CG appears at relatively 
high frequency within these CG islands
So, finding the CG islands in a genome is an 
important problem (gene finding)

CG-islands and the “Fair Bet Casino”

The CG islands problem can be modeled after a 
problem named “The Fair Bet Casino”
The game is to flip coins, which results in only 
two possible outcomes: Head or Tail
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two possible outcomes: Head or Tail
The Fair coin will produce Heads and Tails with 
the same probability ½
The Biased coin will produce Heads with prob. ¾

The “Fair Bet Casino” (cont’d)

Thus, we define the probabilities:
−P(H|F) = P(T|F) = ½
−P(H|B) = ¾, P(T|B) = ¼
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−The crooked dealer changes between Fair and 
Biased coins with probability 0.1

The Fair Bet Casino problem

Input: A sequence x = x1x2x3…xn of coin tosses 
(either H or T) made by two possible coins (F or B)
Output: A sequence π = π1 π2 π3… πn, with each πi
being either F or B indicating that xi is the result of
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being either F or B indicating that xi is the result of 
tossing the Fair or Biased coin, respectively

Problem: Any observed outcome of coin tosses could 
have been generated by any sequence of states!
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P(x|fair coin) vs. P(x|biased coin)

Suppose first that the dealer never changes coins

Some definitions:

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 13

− P(x|fair coin): prob. of  the dealer using the   
F coin and generating the outcome x

− P(x|biased coin): prob. of  the dealer using 
the B coin and generating outcome x

P(x|fair coin) vs. P(x|biased coin)

P(x|fair coin)=P(x1…xn|fair coin) = 
Πi=1,n p (xi|fair coin)= (1/2)n

P(x|biased coin)= P(x x |biased coin)=
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P(x|biased coin)= P(x1…xn|biased coin)=
Πi=1,n p (xi|biased coin)=(3/4)k(1/4)n-k= 3k/4n

where k is the number of  Heads in x (and n-k is 
the number of  Tails)

Log-odds ratios

We define log-odds ratio as follows:

log2(P(x|fair coin) / P(x|biased coin)) 
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Log-odds value

0

Fair coin most likely 
used

Biased coin most likely 
used

Computing log-odds ratio in sliding windows

x1x2x3x4x5x6x7x8…xn

Consider a sliding window of  the outcome sequence,  
find the log-odds for this short window
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g

Disadvantages:
the length of  CG-island is not known in advance
different windows may classify the same position 

differently
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Hidden Markov Model (HMM)

Can be viewed as an abstract machine with k hidden states 
that emits symbols from an alphabet Σ
Each state has its own probability distribution, and the 
machine switches between states according to this 
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g
probability distribution
While in a certain state, the machine makes 2 decisions:
−What state should I move to next?
−What symbol - from the alphabet Σ - should I emit?

HMM for Fair Bet Casino
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HMM model for the Fair Bet Casino Problem

HMM for Fair Bet Casino (cont’d)

H
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HMM model for the Fair Bet Casino Problem

H

HMM for Fair Bet Casino (cont’d)

HT
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HMM model for the Fair Bet Casino Problem

HT
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HMM for Fair Bet Casino (cont’d)

HTH
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HMM model for the Fair Bet Casino Problem

HTH

Why “Hidden”?

Observers can see the emitted symbols of an 
HMM but have no ability to know which state 
the HMM is currently in
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Thus, the goal is to infer the most likely hidden 
states of an HMM based on the given sequence 
of emitted symbols.

HMM parameters

Σ: set of emission characters
Σ = {H, T} for coin tossing
Σ = {A, C, G, T} for the CG-island problem
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Q: set of hidden states, each emitting symbols from Σ
Q={F,B} for coin tossing
Q={CG-island, not CG-island} for the CG-
island problem

HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of 
changing from state k to state l
- transition probabilities
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E = (ek(b)): a |Q| x |Σ| matrix of probability of 
emitting symbol b while being in state k
- emission probabilities
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HMM for Fair Bet Casino
The Fair Bet Casino in HMM terms:
Σ = {0, 1} – 0 for Tails and 1 for Heads
Q = {F,B} – F for Fair & B for Biased coin
Transition Probabilities A      Emission Probabilities E
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Fair Biased

Fair aFF = 0.9 aFB = 0.1

Biased aBF = 0.1 aBB = 0.9

Tails(0) Heads(1)

Fair eF(0) = ½ eF(1) = ½

Biased eB(0) = ¼ eB(1) = ¾

HMM for Fair Bet Casino (cont’d)
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HMM model for the Fair Bet Casino Problem

Hidden Paths
A path π = π1… πn in the HMM is defined as a sequence 
of states
Consider path π = FFFBBBBBFFF and sequence x = 
01011101001

Probability that xi was emitted from state πi
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x 0     1     0    1     1      1    0      1    0     0     1

π      =        F   F F B   B B B B F   F F
P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼ ¾    ½   ½   ½ 

P(πi-1 πi)      ½   9/10
9/10      

1/10      
9/10      

9/10      
9/10     

9/10    
1/10     

9/10     
9/10

Transition probability from state πi-1 to state πi

P(x,π) Calculation

P(x,π)=P(x|π) P(π): Probability that sequence x was 
generated by the path π:

P(x,π) = P(π0→ π1) · Π P(xi| πi) · P(πi→ πi+1)
nn

i=1i=1
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= a π0, π1 · Π e πi (xi) · a πi, πi+1

= Π e πi+1 (xi+1) · a πi, πi+1

where π0 and πn+1 are fictitious initial and terminal 
states begin and end

nn

i=1i=1

i=0i=0

nn
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Decoding problem

Goal: Find an optimal hidden path of states 
given observations

Input: Sequence of observations x = x1…xn
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p q 1 n
generated by an HMM: M(Σ, Q, A, E)

Output: A path that maximizes P(x,π) over all 
possible paths π

Building an edit graph for the 
Decoding problem

Andrew Viterbi used the Manhattan grid model 
to solve the Decoding Problem
Every choice of π = π1… πn corresponds to a 
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y 1 n p
path in the graph
The only valid direction in the graph is eastward
This graph has |Q|2(n-1) edges

Edit graph for Decoding problem
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Decoding problem vs. Alignment problem
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Valid directions in the 
alignment problem

Valid directions in the decoding 
problem.
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Decoding problem: reformulated

The Decoding problem is reduced to finding a 
longest path in the directed acyclic graph (DAG)
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Notes: the length of  the path is defined as the 
product of  its edges’ weights, not the sum.

Decoding problem (cont’d)

Every path in the graph has the probability P(x,π)

The Viterbi algorithm finds the path that
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The Viterbi algorithm finds the path that 
maximizes P(x,π) among all possible paths

The Viterbi algorithm runs in O(n|Q|2) time

Weights of edgesWeights of edges

ww

(k i)(k i) (l i+1)(l i+1)
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The weight The weight ww is given by:is given by:

??????

(k, i)(k, i) (l, i+1)(l, i+1)

Weights of edges

w

(k i) (l i+1)

n
P(x,π) = Π e πi+1 (xi+1) . a πi, πi+1i=0
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The weight w is given by:

??

(k, i) (l, i+1)
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Weights of edges

w

(k i) (l i+1)

i-th term = e πi+1 (xi+1) . a πi, πi+1
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The weight w is given by:

?

(k, i) (l, i+1)

Weights of edges

w

(k i) (l i+1)

i-th term = e πi+1 (xi+1) . a πi, πi+1 = el (xi+1) . akl   for  πi =k, πi+1=l

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 38

The weight  w = el (xi+1) . akl

(k, i) (l, i+1)

Decoding problem and Dynamic programming

Define sk,i as the probability of  emitting the prefix x1…xi and reaching 
the state k

sl,i+1 = maxk Є Q {sk,i · weight of  edge between (k,i) and (l,i+1) }=
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maxk Є Q {sk,i ·                  akl · el (xi+1)                           }=

el (xi+1) · maxk Є Q {sk,i · akl}

Decoding problem (cont’d)

Initialization:
− sbegin,0 = 1
− sk,0 = 0 for k ≠ begin.
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Let π* be the optimal path. Then,

P(x,π*) = maxk Є Q {sk,n . ak,end}
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Viterbi algorithm

The value of the product can become extremely 
small, which leads to overflowing
To avoid overflowing, use log value instead. 
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sl,i+1= log el(xi+1) + max k Є Q {sk,i  + log(akl)}

Remember: log (ab) = log a + log b

Forward-backward problem

Given: a sequence of coin tosses generated by 
an HMM
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Goal: find the probability that the dealer was 
using a biased coin at a particular time

Forward algorithm

Define fk,i (forward probability) as the probability of 
emitting the prefix x1…xi and reaching the state π = k
The recurrence for the forward algorithm:
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fk,i = ek(xi) . Σ fl,i-1 . alk
l Є Q

Remember the Viterbi algorithm:
sl,i+1 = el (xi+1) ·  maxk Є Q {sk,i · akl}

Backward algorithm

However, forward probability is not the only factor 
affecting P(πi = k|x)
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The sequence of transitions and emissions that 
the HMM undergoes between πi+1 and πn also 
affect P(πi = k|x)

forward      xi backward
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Backward algorithm (cont’d)

Define backward probability bk,i as the probability 
of being in state πi = k and emitting the suffix
xi+1…xn

Th f h b k d l h
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The recurrence for the backward algorithm:

bk,i = Σ el(xi+1) . bl,i+1 . akl  
l Є Q

Backward-forward algorithm

The probability that the dealer used a 
biased coin at any moment i:

P(x, πi = k) fki . bki
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P(x, πi  k)       fki . bki
P(πi = k|x) = _______________ = ___________

P(x)             P(x)

where:
P(x, πi = k) = Σπ with πi = kP(x,π): the sum of  probabilities of  all paths with πi=k
P(x) = Σπ P(x,π): the sum of probabilities over all paths

Summary

HMM defined by 
− Σ: set of emission characters
− Q: set of hidden states
− Transition probabilities
− Emission probabilities

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 47

p
Finding most probable path for a given sequence can 
be done with the Viterbi algorithm
The total probability of the sequence (for matching) 
calculated with the forward algorithm
Probability of being in a state at a given time requires 
the backward algorithm in addition

Summary

Every layer i emit one 
symbol xi

Every path from layer 1 to 
layer n has probability

Q1

Q2

Q
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layer n has probability 
P(x,π)

Note that the path tells 
us which hidden state in 
layer i that emitted xi

Q3

Q4

x1 x2    x3 x4 x5 x6
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Summary

Probability of sequence and path:
− P(x,π) = P(x|π) P(π) = Πi e πi+1 (xi+1) · a πi, πi+1

Viterbi gives the path π* that maximizes P(x,π):
− sl,i+1 = el (xi+1) · maxk Є Q {sk,i · akl}
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Forward algorithm sums the probability of x over all paths:
− ΣπP(x,π) = ΣπP(x|π) P(π) = P(x)
− fk,i = ek(xi) . Σl fl,i-1 . alk

Forward+backwards sums the probability of x over all paths 
with πi = k
− Σπ with πi = k P(x,π)

Summary
A path π = π1… πn in the HMM is defined as a sequence 
of states
Consider path π = FFFBBBBBFFF and sequence x = 
01011101001

Probability that xi was emitted from state πi
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x 0     1     0    1     1      1    0      1    0     0     1

π      =        F   F   F   B   B   B   B   B   F   F   F
P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼ ¾    ½   ½   ½ 

P(πi-1 πi)      ½   9/10
9/10      

1/10      
9/10      

9/10      
9/10     

9/10    
1/10     

9/10     
9/10

Transition probability from state πi-1 to state πi

Summary
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HMM model for the Fair Bet Casino Problem

Finding distant members of a protein family

A distant cousin of functionally related sequences in a 
protein family may have weak pairwise similarities with 
each member of the family and thus fail significance 
test using e.g. BLAST
However they may have weak similarities with many
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However, they may have weak similarities with many
members of the family
The goal is to align a sequence to all members of the 
family at once
Family of related proteins can be represented by their 
multiple alignment and the corresponding profile
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Profile representation of protein families

Aligned DNA sequences can be represented by  a 
4· n profile matrix reflecting the frequencies 
of nucleotides in every aligned position.
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Protein family can be represented by a 20· n profile 
representing frequencies of  amino acids.

HMMs

HMMs can also be used for aligning a 
sequence against a protein family
Conserved positions in the family 

d i ll li k d h
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corresponds to n sequentially linked match
states M1,…,Mn in the profile HMM
HMMs handle gaps better than profiles do

Building a profile HMM
Multiple alignment is used to construct the HMM model
Assign each column to a Match state in HMM. Add Insertion and 
Deletion state
Estimate the emission probabilities according to amino acid 
counts in columns
Estimate the transition probabilities between Match, Deletion and
Insertion states
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Insertion states

VTISCTGSSSNIGAG-NHVKWYQQLPG

VTISCTGTSSNIGS--ITVNWYQQLPG

LRLSCSSSGFIFSS--YAMYWVRQA--

LSLTCTVSG-SFDD--YYSTWVRQP--

PEVTCVVVD-SHEDPQVKFNWYVDG--

ATLVCLISDFYPGA--VTVAWKADS--

AALGCLVKD-FPEP--VTVSWNSG---

VSLTCLVKGFYPSD--IAVEWESNG--

Match state 3:
eM3(L) = 5/8
eM3(I) = 3/8

Modeled as insertions

Transitions from match state 9 to 10
aM9,M10 = 5/8
aM9,D10 = 3/8

Profile HMM
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A profile HMM
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Note: penalties in HMMs

Different penalties for opening a gap and extending 
the gap is naturally implemented in HMM
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− log(aMI)+log(aIM) = gap initiation penalty
− log(aII) = gap extension penalty

Emission probabilities for insertions
Probability of  emitting a symbol a at an 
insertion state Ij:

eIj(a) = p(a)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 58

j

where p(a) is the frequency of  the 
occurrence of  the symbol a in all the 
sequences.

Profile HMM alignment

Define vM
j (i) as the logarithmic likelihood score 

of the best path for matching x1...xi to a profile 
HMM ending with xi emitted by the state Mj
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vI
j (i) and vD

j (i) are defined similarly

Profile HMM alignment: Dynamic programming

vM
j-1(i-1) + log(aMj-1,Mj )

vM
j(i) = log (eMj(xi))     +     max     vI

j-1(i-1) + log(aIj-1,Mj )
vD

j-1(i-1) + log(aDj-1,Mj )

vM (i 1) + log(aM I )

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 60

vM
j(i-1) + log(aMj, Ij)

vI
j(i) = log (eIj(xi))     +     max        vI

j(i-1) + log(aIj, Ij)
vD

j(i-1) + log(aDj, Ij)

vM
j-1(i) + log(aMj-1, Dj)

vD
j(i) = max vI

j-1(i) + log(aIj-1, Dj)
vD

j-1(i) + log(aDj-1, Dj)
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Profile HMM
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A profile HMM

Making a collection of HMM for 
protein families

Use Blast to separate a protein database into families of 
related proteins  
Construct a multiple alignment for each protein family
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p g p y
Construct a profile HMM model and optimize the 
parameters of the model (transition and emission 
probabilities)
Align the target sequence against each HMM to find the best 
fit between a target sequence and an HMM

Pfam

Pfam decribes protein domains
Each protein domain family in Pfam has:
− Seed alignment: manually verified multiple alignment of a 

representative set of sequences
−HMM built from the seed alignment for further database
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−HMM built from the seed alignment for further database 
searches

− Full alignment generated automatically from the  HMM
The distinction between seed and full alignments 
facilitates Pfam updates
− Seed alignments are stable resources
− Full alignments can be updated with newly found amino 

acid sequences

Pfam

Pfam uses a tool called HMMER with the following 
architecture:
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Scoring matches
Given a protein sequence x and an HMM, what is a 
significant score?
− The score from the forward algorithm: p*= log p(x)
− Generate 1000 random sequences and score them: 

prand 1, prand 2, …, prand 1000
Fi di ib i h d d l l h f l
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− Fit a distribution to the random scores and calculate the false 
discover rate (fdr)

− E-score = fdr · Size of query database (the expected number of false 
positive hits)

p*
fdr

p

Distribution 
for random 
scores

HMM parameter estimation

So far, we have (mostly) assumed that the 
transition and emission probabilities are known

H i HMM li i h
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However, in most HMM applications, the 
probabilities are not known.  It’s very hard to 
estimate the probabilities.

HMM parameter estimation problem

Given
HMM with states and alphabet (emission 

characters)
I d d i i 1
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Independent training sequences x1, … xm

Find HMM parameters Θ (that is, akl, ek(b)) that 
maximize 

P(x1, …, xm | Θ),
the joint probability of the training sequences. 

Maximize the likelihood
P(x1, …, xm | Θ) as a function of Θ is called the 
likelihood of the model
The training sequences are assumed independent, 
therefore

P(x1 xm | Θ) = Πi P(xi | Θ)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 68

P(x , …, x | Θ)  Πi P(x | Θ)
The parameter estimation problem seeks Θ that realizes

In practice the log likelihood is computed to avoid 
underflow errors

∏ Θ
Θ i

ixP )|(max
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Two situations

Known paths for training sequences
CG islands are marked on training sequences
One evening the casino dealer allows us to see when he 
changes dice
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c a ges d ce
A multiple alignment of the protein family is given 

Unknown paths
CG islands are not marked
Do not see when the casino dealer changes dice
A multiple alignment of the protein family is not given

Known paths
Akl = # of transitions from state k to state l in the 
training sequences
Ek(b) = # of times b is emitted from state k in the 
training sequences
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g q
Compute akl and ek(b) as maximum likelihood 
estimators:

∑
∑

∑∈

∈

=

=

'

'

'

)'(/)()(

/

b

kkk

Ql

klklkl

bEbEbe

AAa

Pseudocounts
Some state k may not appear in any of the training 
sequences. This means Akl = 0 for every state l and 
akl cannot be computed with the given equation
To avoid this overfitting use predetermined 
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pseudocounts rkl and rk(b).
Akl = # of transitions k→l + rkl

Ek(b) = # of emissions of b from k + rk(b)
The pseudocounts reflect our prior biases about 
the probability values

Unknown paths: Viterbi training

Start with some guess for initial parameters
Iterate :

Idea: use Viterbi decoding to compute the most probable 
paths for training sequences x

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 72

− Compute the most probable path π* for each x using 
the current parameters (Viterbi algorithm)
− Stop if no change in π*

− Determine Akl and Ek(b) using the computed paths
− Compute new parameters akl and ek(b) using the same 

formulas as before
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Viterbi training analysis
The algorithm converges precisely
− There are a finite number of possible paths
− New parameters are uniquely determined by the current π*
− There may be several paths for x with the same probability, hence 

to decide convergence one must compare the new π* with all 
previous paths having the highest probability
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p p g g p y
Does not maximize the likelihood Πi P(xi | Θ) but the 
contribution to the likelihood of  the most probable path Πi
P(xi | Θ, π*) 
In general performs less well than Baum-Welch

Unknown paths: Baum-Welch

Idea:
1. Guess initial values for parameters.

art and experience, not science
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2. Estimate new (better) values for parameters.
how ?

3. Repeat until stopping criteria is met.
what criteria ?

Better values for parameters

Would need the Akl and Ek(b) values but cannot 
count (the path is unknown) and do not want to use a 
most probable path
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For all states k,l, symbol b and training sequence x

Compute Akl and Ek(b) as expected values, 
given the current parameters

Notation

For any sequence of characters x emitted 
along some unknown path π, denote by πi = 
k the assumption that the state at position i
(i hi h i i d) i k

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 76

(in which xi is emitted) is k
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Probabilistic setting for Ak,l
Given x1, … ,xm consider a discrete probability space
with elementary events

εk,l, = “k → l is taken in x1, …, xm ”
For each x in {x1,…,xm} and each position i in x let Yx,i
be a random variable defined by
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be a random variable defined by 

Define Y = Σx Σi Yx,i random variable that counts # of 
times the event εk,l happens in x1,…,xm.
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The meaning of Akl

Let Akl be the expectation of Y

E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =
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ΣxΣi P({εk,l | πi = k and πi+1 = l}) =
ΣxΣi P(πi = k, πi+1 = l | x)

Need to compute P(πi = k, πi+1 = l | x)

Probabilistic setting for Ek(b)

Given x1, … ,xm consider a discrete probability 
space with elementary events

εk,b = “b is emitted in state k in x1, … ,xm ”
For each x in {x1,…,xm} and each position i in x let
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For each x in {x ,…,x } and each position i in x let 
Yx,i be a random variable defined by 

Define Y = Σx Σi Yx,i random variable that counts # 
of times the event εk,b happens in x1,…,xm.
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The meaning of Ek(b)

Let Ek(b) be the expectation of Y

E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =
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ΣxΣi P({εk,b | xi = b and πi = k}) =

Need to compute P(πi = k | x)
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Computing new parameters

Consider x = x1…xn training sequence
Concentrate on positions i and i+1
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Use the forward-backward values: 
fki = P(x1 … xi , πi = k)
bki = P(xi+1 … xn | πi = k)

Compute Akl (1)

Prob k → l is taken at position i of x
P(πi = k, πi+1 = l | x1…xn) = P(x, πi = k, πi+1 = l) / P(x)

Compute P(x) using either forward or backward values
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Compute P(x) using either forward or backward values
We’ll show that P(x, πi = k, πi+1 = l) = bli+1 ·el(xi+1) ·akl ·fki

Expected # times k → l is used in training sequences
Akl = Σx Σi (bli+1 ·el(xi+1) ·akl ·fki) / P(x)

Compute Akl (2)

P(x, πi = k, πi+1 = l) = 
P(x1…xi, πi = k, πi+1 = l, xi+1…xn) =
P(πi+1 = l, xi+1…xn | x1…xi, πi = k)·P(x1…xi,πi =k)=
P(π = l x x | π = k)·f =
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P(πi+1 = l, xi+1…xn | πi = k) fki =
P(xi+1…xn | πi = k, πi+1 = l)·P(πi+1 = l | πi = k)·fki =
P(xi+1…xn | πi+1 = l)·akl ·fki =
P(xi+2…xn | xi+1, πi+1 = l) · P(xi+1 | πi+1 = l) ·akl ·fki =
P(xi+2…xn | πi+1 = l) ·el(xi+1) ·akl ·fki =
bli+1 ·el(xi+1) ·akl ·fki

Compute Ek(b)

Prob xi of x is emitted in state k
P(πi = k | x1…xn) = P(πi = k, x1…xn)/P(x) 

P(πi = k, x1…xn) = P(x1…xi,πi = k,xi+1…xn) = 
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P(xi+1…xn | x1…xi,πi = k) · P(x1…xi,πi = k) =
P(xi+1…xn | πi = k) · fki = bki · fki
Expected # times b is emitted in state k
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Finally, new parameters
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Can add pseudocounts as before.
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Stopping criteria

Cannot actually reach maximum (optimization of 
continuous functions)

Therefore need stopping criteria
Compute the log likelihood of the model for
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Compute the log likelihood of  the model for 
current Θ

Compare with previous log likelihood
Stop if small difference
Stop after a certain number of iterations

∑ Θ
x

xP )|(log

The Baum-Welch algorithm

Initialization:
Pick the best-guess for model parameters

(or arbitrary)
Iteration:
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1. Forward for each x
2. Backward for each x
3. Calculate Akl, Ek(b)
4. Calculate new akl, ek(b)
5. Calculate new log-likelihood

Until log-likelihood does not change much

Baum-Welch  analysis 

Log-likelihood is increased by iterations
Baum-Welch is a particular case of the EM 
(expectation maximization) algorithm
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Convergence to local maximum. Choice of initial 
parameters determines local maximum to which 
the algorithm converges


