
1

Dynamic programming

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 1

Torgeir R. Hvidsten

This lecture

Sequence alignment
−Edit distance
−Global alignment and scoring
−Local alignment

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 2

g
−Gap penalties
−Multiple alignments

Gene prediction

Dynamic programming

DNA sequence comparison:
First success story

In 1984 Russell Doolittle and colleagues
found similarities between a cancer-causing
gene and a normal growth factor (PDGF)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 3

g g ()
gene using a database search
Finding sequence similarities with genes of
known function is a common approach to
infer the function of a newly sequenced gene

v = ATCTGATGn = 8
w = TGCATAC m = 7

match mismatch

4 matches
1 mismatches
2 insertions
2 deletions

Aligning DNA sequences

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 4

A T C T G A T G
T G C A T A C

v
w

deletion
insertionindels

2

Edit distance

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 5

Hamming distance (I)

Given two DNA sequences v and w :

v : ATATATAT

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 6

w: TATATATA

The Hamming distance dH(v, w) = 8 is large, but
the sequences are very similar

Hamming distance (II)

By shifting one sequence over one position

v : ATATATAT-

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 7

w: -TATATATA

the distance is dH(v, w) = 2

Hamming distance neglects insertions and
deletions in DNA

Edit distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number of
elementary operations (insertions, deletions, and
substitutions) to transform one string into the

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 8

substitutions) to transform one string into the
other

d(v,w) = minimum number of elementary
operations to transform v into w

3

Hamming distance vs Edit distance

V = ATATATAT V = - ATATATAT

Hamming distance
always compares the
ith letter of v with the
ith letter of w

Edit distance
may compare the
i-th letter of v with the
j-th letter of w

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 9

W = TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find which j goes with which i ?

W = TATATATA-

Longest common subsequence (LCS) –
alignment without mismatches

Given two sequences
v = v1 v2…vm

w = w1 w2…wn

The LCS of v and w is the longest sequence of

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 10

The LCS of v and w is the longest sequence of
positions

v : 1 < i1 < i2 < … < ik < m
w : 1 < j1 < j2 < … < jk < n

such that
kt1wv

tt ji ≤≤= for

LCS: Example

– T G C T – A – C

A T – C T G A T C

elements of v

elements of w
A

–

2

1

1

0

2

2

3

3

3

4

4

5

5

5

6

6

7

6

8

7

j coords:

i coords:

0

0

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 11

Matches shown in red
positions in v :
positions in w :

1 < 3 < 5 < 6 < 7

2 < 3 < 4 < 6 < 8

TCTAC is a common subsequence of v and w

Every common subsequence is a path in 2-D grid

Edit graph for the LCS problem

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path from
source to sink is a
common
subsequence (CS)

source

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 12

C

A

T

A

C

3

4

5

6

7

Every diagonal edge
adds an extra
element to the CS

LCS Problem:
Find the path with
the maximum
number of diagonal
edgessink

4

Edit graph for the LCS problem

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Deletion

Matches

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 13

C

A

T

A

C

3

4

5

6

7

Insertion

LCS: Dynamic programming
Goal: Find the LCS of two strings
Input: A weighted graph G, where diagonals are
+1 edges, with two distinct vertices, one
labeled “source” one labeled “sink”

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 14

Output: A longest path in G from “source” to
“sink”

Computing LCS (I)

Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 15

The length of LCS(vi,wj) is computed by:

si, j = max

si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

Computing LCS (II)

si, j = max

si-1, j + 0

si, j-1 + 0

si-1, j-1 + 1 if vi = wj

Insertion

Deletion

Match

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 16

i,j

i-1,j

i,j -1

i-1,j -1
1 0

0

5

LCS algorithm
LCS(v, n, w, m)
1 for i ← 1 to n
2 si, 0 ← 0
3 for j ← 1 to m
4 s0 j← 0

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 17

4 s0, j ← 0
5 for i ← 1 to n
6 for j ← 1 to m

si-1, j
8 si, j ← max si, j-1

si-1, j-1 + 1, if vi = wj
10 return sn, m

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: initiation

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 18

C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 1, j = 1... m

0 1 1 1 1 1 1 1

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 19

C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 2, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 20

C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

6

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 3 ... n, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 21

C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

0 1 2 2 2 2 2 3

1 1 2 2 2 3 3 3

1 2 2 3 3 3 4 4

1 2 2 3 3 4 4 4

1 2 3 3 3 4 4 5

LCS Runtime

It takes O(nm) time to fill in the n × m dynamic
programming matrix

Th d d i f d “f ” l

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 22

The pseudocode consists of a nested “for” loop
inside of another “for” loop to set up a n × m
matrix

What’s so great about
dynamic programming?

A naive exhaustive search would have the
running time O(3f(n,m))
An exhaustive search would recompute the same
subpaths several times

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 23

subpaths several times
Dynamic programming takes advantage of the
rich computational structure in the search space,
and reuse already computed subpaths

Traversing the edit graph

3 different strategies:
−a) Column by column
−b) Row by row

) Al di l

a) b)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 24

−c) Along diagonals
c)

7

Align sequences in subquadratic time

Divide and conquer techniques can be used to
solve the LCS problem in O(n2/log n) time

n

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 25

Solve mini-alignment
problemsn/t

Global alignment and scoring

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 26

From LCS to alignment

The Longest Common Subsequence (LCS)
problem is the simplest form of sequence
alignment
We scored 1 for matches and 0 for indels

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 27

We scored 1 for matches and 0 for indels
We did not allow mismatches, only insertions
and deletions

Simple scoring

Mismatches are penalized by –μ,
Indels are penalized by –σ,
Matches are rewarded with +1

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 28

The resulting score is:
#matches – μ · #mismatches – σ· #indels

8

The global alignment problem

Goal: Find the best alignment between two strings under
a given scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 29

Output : Alignment of maximum score

si-1, j – σ

si,j = max si, j-1 – σ
si-1, j-1 – µ if vi ≠ wj
si-1, j-1 + 1 if vi = wj

Scoring matrices

To generalize scoring, consider a (4+1) × (4+1) scoring
matrix δ
In the case of an amino acid sequence alignment, the
scoring matrix would be (20+1) × (20+1)
Th ddi i f 1 i i l d h f

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 30

The addition of 1 is to include the score for
comparison of a gap character “-” (indels)

si-1, j + δ (vi, -)
si,j = max si, j-1 + δ (-, wj)

si-1, j-1 + δ (vi, wj)

Making a scoring matrix

Scoring matrices are created based on biological
evidence
Alignments can be thought of as two sequences
that differ due to mutations

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 31

that differ due to mutations
Some of these mutations have little effect on the
protein’s function, therefore some penalties, δ(i, j),
will be less harsh than others
δ(i, j) ≈ how often do amino acid i substitutes
amino acid j in alignments of related proteins

Scoring matrix: Example
Notice that although R
and K are different amino
acids, they have a positive
score

A R N K

A 5 -2 -1 -1

R - 7 -1 3

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 32

Why? They are both
positively charged amino
acids and will not greatly
change the function of
protein

N - - 7 0

K - - - 6

9

Scoring matrices

Amino acid substitution matrices
−PAM
−BLOSUM

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 33

DNA substitution matrices
−DNA is less conserved than protein sequences
−Less effective to compare coding regions at

nucleotide level

PAM

Point Accepted Mutation
1 PAM = PAM1 = 1% average change of all amino acid
positions
After 100 PAMs of evolution, not every residue

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 34

will have changed
− some residues may have mutated several times
− some residues may have returned to their

original state
− some residues may not changed at all

PAMX

PAMx = PAM1
x

−PAM250 = PAM1
250

PAM250 is a widely used scoring matrix:

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 35

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...
A R N D C Q E G H I L K ...

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...
Arg R 3 17 4 3 2 5 3 2 6 3 2 9
Asn N 4 4 6 7 2 5 6 4 6 3 2 5
Asp D 5 4 8 11 1 7 10 5 6 3 2 5
Cys C 2 1 1 1 52 1 1 2 2 2 1 1
Gln Q 3 5 5 6 1 10 7 3 7 2 3 5
...
Trp W 0 2 0 0 0 0 0 0 1 0 1 0
Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1
Val V 7 4 4 4 4 4 4 4 5 4 15 10

BLOSUM

Blocks Substitution Matrix
Scores derived by observing the frequencies of
substitutions in blocks of local alignments in
related proteins

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 36

related proteins
Matrix name indicates evolutionary distance
− BLOSUM62 was created using sequences sharing no

more than 62% sequence identity

10

BLOSUM50

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 37

Local alignment

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 38

Local vs. global alignment (I)

The Global alignment problem : find the longest
path between vertices (0,0) and (n,m) in the edit
graph
The Local alignment problem tries to find the

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 39

The Local alignment problem tries to find the
longest path between arbitrary vertices (i, j) and
(i’, j’) in the edit graph
In the edit graph with negative scores, local
alignment may score higher than global
alignment

Local vs. global alignment (II)

Global Alignment
--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 40

Local Alignment—better alignment to find
conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

11

Local vs. global alignment (III)

Local alignment

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 41

Global alignment

The local alignment problem

Goal: Find the best local alignment between two
strings
Input : Strings v, w and scoring matrix δ
O Ali f b i f d

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 42

Output : Alignment of substrings of v and w
whose alignment score is maximum among all
possible alignment of all possible substrings

Free rides

Vertex (0,0)

Yeah, a free ride!

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 43

The dashed edges represent the free rides from
(0,0) to every other node.

The local alignment recurrence
The largest value of si,j over the whole edit graph
is the score of the best local alignment

0

si 1 j + δ (vi, –)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 44

The 0 is the only difference from the recurrence
of the global alignment problem

si,j = max si-1, j δ (vi,)
si, j-1 + δ (–, wj)
si-1, j-1 + δ (vi, wj)

12

Gap penalties

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 45

Scoring indels: Naive approach

A fixed penalty σ is given to every indel:
− -σ for 1 indel,
− -2σ for 2 consecutive indels,

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 46

− -3σ for 3 consecutive indels, etc
Can be too severe penalty for a series of 100
consecutive indels

In nature, a series of k indels often come as a
single event rather than a series of k single
nucleotide events:

ATA GC ATAG GC

Gap penalties

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 47

ATA– –GC ATAG– GC
ATATTGC AT– GTGC

Normal scoring would
give the same score for
both alignments

This is more likely This is less likely

Accounting for gaps

Score for a gap of length x is:
-(ρ + σx)

where ρ > 0 is the penalty for introducing a gap:
gap opening penalty

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 48

g p p g p y
ρ will be large relative to σ:

gap extension penalty
because you do not want to add too much of a
penalty for extending the gap

13

Adding “penalty” edges to the edit graph

To reflect gap penalties we
have to add “long” horizontal
and vertical edges to the edit
graph of weight: - ρ - x·σ
This increases the running

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 49

This increases the running
time of the alignment
algorithm by a factor of n
(where n is the number of
vertices)
So the complexity increases
from O(n2) to O(n3)

The three recurrences for the scoring algorithm
creates a 3-layered graph
The upper level creates/extends gaps in the
sequence w

Gap penalties and 3 layer edit graphs

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 50

sequence w
The lower level creates/extends gaps in
sequence v
The main level extends matches and mismatches

3 layer edit grap

ρ

σ
δ

δ

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 51

ρ

σ

δ

δ
δ

Gap penalty recurrences

si, j = max
s i-1, j – σ
si-1, j – (ρ+σ)

si j = max
s i, j-1 – σ

Continue gap in w (insertion): upper level

Start gap in w (insertion): from main level

Continue gap in v (deletion): lower level

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 52

si-1, j-1 + δ (vi, wj)

si, j = max s i, j
s i, j

si, j max
si, j-1 – (ρ+σ) Start gap in v (deletion): from main level

Match or mismatch: main level

End insertion: from upper level

End deletion: from lower level

14

BLAST (I)

Basic Local Alignment Search Tool (BLAST)
finds regions of local similarity between
sequences
The program compares nucleotide or protein

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 53

The program compares nucleotide or protein
sequences to sequence databases and calculates
the statistical significance of matches

BLAST (II)

First stage: Identify exact matches of length W
(default W=3) between the query and the
sequences in the database
Second stage: Extend the match in both

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 54

g
directions in an attempt to boost the alignment
score (insertions and deletions are not
considered)
Third stage: If a high-scoring ungapped
alignment is found: Perform a gapped local
alignment using dynamic programming

Multiple alignments

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 55

Multiple alignment

A faint similarity between two sequences becomes
significant if present in many
Multiple alignments can reveal subtle similarities that
pairwise alignments do not reveal

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 56

p g

A T – G C G –
A – C G T – A
A T C A C – A

15

2D vs 3D edit graph

v

w

v

w

u

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 57

2-D edit graph

3-D edit graph

Architecture of 3D edit graph
(i-1,j-1,k-1)

(i-1,j-1,k) (i-1,j,k)

(i-1,j,k-1)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 58

(i,j-1,k-1)

(i,j-1,k) (i,j,k)

(i,j,k-1)

Multiple alignment of three sequences:
Dynamic programming

si,j,k = max

si-1,j-1,k-1 + δ(vi, wj, uk)
si-1,j-1,k + δ (vi, wj, _)
si-1,j,k-1 + δ (vi, _, uk)
si,j-1,k-1 + δ (_, wj, uk)
s + δ (v)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 59

δ(x, y, z) is an entry in the 3D scoring matrix

si-1,j,k + δ (vi, _ , _)
si,j-1,k + δ (_, wj, _)
si,j,k-1 + δ (_, _, uk)

Multiple alignment: Running time

For three sequences of length n, the run time is
O(n3)
For k sequences, build a k-dimensional edit
graph with run time O(nk)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 60

graph, with run time O(nk)

Conclusion: dynamic programming approach for
alignment between two sequences is easily
extended to k sequences, but it is impractical due
to exponential running time

16

Multiple alignment induces
pairwise alignments

Every multiple alignment:

x: AC-GCGG-C
y: AC-GC-GAG

GCCGC GAG

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 61

z: GCCGC-GAG

induces pairwise alignment:

x: ACGCGG-C x: AC-GCGG-C y: AC-GCGAG
y: ACGC-GAC z: GCCGC-GAG z: GCCGCGAG

Reverse problem: Constructing multiple
alignment from pairwise alignments

Given three pairwise alignments:

x: ACGCTGG-C x: AC-GCTGG-C y: AC-GC-GAG
y: ACGC--GAC z: GCCGCA-GAG z: GCCGCAGAG

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 62

can we construct the multiple alignment that induces them?

Can combine pairwise
alignments into multiple
alignment

Combining optimal pairwise alignments
into multiple alignment

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 63

Can not combine pairwise
alignments into multiple
alignment

Profile representation of multiple alignment
- A G G C T A T C A C C T G
T A G – C T A C C A - - - G
C A G – C T A C C A - - - G
C A G – C T A T C A C – G G
C A G – C T A T C G C – G G

A 1 1 .8
C .6 1 .4 1 .6 .2
G 1 2 2 4 1 os

iti
on

Sc

or
in

g
rix

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 64

G 1 .2 .2 .4 1
T .2 1 .6 .2
- .2 .8 .4 .8 .4

In the past we were aligning a sequence against a sequence
With profiles we can align a sequence against a profile and
even a profile against a profile

PS
SM

: P
o

Sp
ec

ifi
c

S
M

at
r

17

Multiple alignment: Greedy approach

Choose most similar pair of strings and combine into a
profile, thereby reducing the alignment of k sequences to an
alignment of of k-1 sequences/profiles. Repeat!
This is a heuristic greedy method

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 65

u1= ACGTACGTACGT…

u2 = TTAATTAATTAA…

u3 = ACTACTACTACT…

…

uk = CCGGCCGGCCGG

u1= ACg/tTACg/tTACg/cT…

u2 = TTAATTAATTAA…

…

uk = CCGGCCGGCCGG…
k

k-1

CLUSTALW (I)

1. Determine all pairwise alignments between sequences
and the degree of similarity between them.

2. Construct a similarity tree.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 66

3. Combine the alignments from 1 in the order specified
in 2 using the rule "once a gap always a gap“.

CLUSTALW (II)
1. Determine all pairwise alignments between sequences and the degree of

similarity between them.
2. Construct a similarity tree.
3. Combine the alignments from 1 in the order specified in 2 using the rule

"once a gap always a gap“.

Details:
1 1 clustalw uses a pairwise alignment to compute pairwise alignments

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 67

1.1. clustalw uses a pairwise alignment to compute pairwise alignments.
1.2. Using the alignments from 1.1 it computes a distance.
1.2.1. The distance is calculated by looking at the non-gapped positions and
count the number of mistmatches between the two sequences. Then divide
this value by the number of non-gapped pairs to calculate the distance. Once
all distances for all pairs are calculated they go into a matrix.

CLUSTALW (III)
1. Determine all pairwise alignments between sequences and the degree of

similarity between them.
2. Construct a similarity tree.
3. Combine the alignments from 1 in the order specified in 2 using the rule

"once a gap always a gap“.

Details:
2 Using the matrix from 1 2 1 and Neighbor Joining* Clustalw constructs the

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 68

2. Using the matrix from 1.2.1. and Neighbor-Joining*, Clustalw constructs the
similarity tree. The root is placed in the middle of the longest chain of
consecutive edges.

* Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4: 406-425

18

CLUSTALW (IV)
1. Determine all pairwise alignments between sequences and the degree of

similarity between them.
2. Construct a similarity tree.
3. Combine the alignments from 1 in the order specified in 2 using the rule

"once a gap always a gap“.

Details:
2 Combine the alignments starting from the closest related groups (going

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 69

2. Combine the alignments, starting from the closest related groups (going
from the tips of the tree towards the root).

Phylogeny-aware gap
placement (I)

A. Löytynoja and N. Goldman. Phylogeny-
Aware Gap Placement Prevents Errors in
Sequence Alignment and Evolutionary
Analysis. Science 320: 1632-35, 2008.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 70

Conclusion:
“The resulting alignments may be fragmented
by many gaps and may not be as visually
beautiful as the traditional alignments, but if
they represent correct homology, we have to get
used to them.”

Phylogeny-aware gap placement (II)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 71

PSI-BLAST

Position-Specific Iterative (PSI) BLAST detect weak
relationships between the query and sequences in the
database (higher sensitivity than BLAST)
PSI-BLAST first constructs a multiple alignment from
the highest scoring hits in a initial BLAST search and

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 72

g g
generate a profile from this alignment i.e. PSSM
The profile is used to iteratively perform additional
BLAST searches (called iterations) and the results of
each iteration is used to refine the profile
The iteration stops when no new matches with a
satisfactory score are obtained

19

Method power
You want to find homologous proteins to a specific protein A
using some computational method X:

All proteins in the database

Sensitivity: TP/(TP+FN)
Specificity: TN/(TN+FP)

Homologous to A

Predicted by X to be
homologous to A

TP

TN

FP

FN

Gene prediction

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 74

Gene prediction problem

Gene: A sequence of nucleotides coding for
protein

G di i bl D i h

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 75

Gene prediction problem: Determine the
beginning and end positions of genes in a
genome

Central dogma

DNA

transcription

CCTGAGCCAACTATTGATGAA

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 76

Protein

RNA

translation

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

20

Translating nucleotides into amino acids

Codon: 3 consecutive nucleotides
43 = 64 possible codons
Genetic code is degenerative and redundant

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 77

Includes start and stop codons
An amino acid may be coded by more than one
codon

Discovery of split genes

In 1977, Phillip Sharp
and Richard Roberts
experimented with
mRNA of hexon, a viral

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 78

protein
mRNA-DNA hybrids
formed three curious
loop structures instead of
contiguous duplex
segments

Exons and introns (I)

In eukaryotes, the gene is a combination of coding
segments (exons) that are interrupted by non-coding
segments (introns)
This makes computational gene prediction in

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 79

p g p
eukaryotes even more difficult
Prokaryotes don’t have introns - genes in prokaryotes
are continuous

Exons and introns (II)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 80

21

Two approaches to gene prediction

Statistical: based on detecting subtle statistical
variations between coding (exons) and non-
coding regions
Similarity based: many human genes are similar

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 81

Similarity-based: many human genes are similar
to genes in mice, chicken, or even bacteria.
Therefore, already known mouse, chicken, and
bacterial genes may help to find human genes

Gene prediction:
Similarity-based approach

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 82

y pp

Similarity-based approach to
gene prediction

Genes in different organisms are similar
The similarity-based approach uses known genes
in one genome to predict genes in another
genome

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 83

genome
Problem: Given a known gene and an
unannotated genome sequence, find a set of
substrings in the genomic sequence whose
concatenation best fits the known gene

Local alignment gives candidate exons

Frog G
e

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 84

Human Genome

nes (know
n)

22

Exon chaining problem

Exon chaining problem: Given a set of weighted
candidate exons, find a maximum set of non-
overlapping exons
Candidate exon (l, r, w) : left position, right position,

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 85

p g p
weight (defined as the score of the local alignment)

Input: a set of weighted intervals (putative exons):
Output: A maximum chain of intervals from this set

Exon chaining problem:
Graph representation

This problem can be solved with dynamic programming
in O(n) time

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 86

Exon chaining algorithm
ExonChaining (G, n)
1 for i ← to 2n
2 si ← 0
3 for i ← 1 to 2n
4 if vertex v in G corresponds to the right end of an interval I

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 87

4 if vertex vi in G corresponds to the right end of an interval I
5 j ← Index of vertex for left end of the interval I
6 w ← Weight of the interval I
7 si ← max {sj + w, si-1}
8 else
9 si ← si-1
10 return s2n

Example

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 88

s 21

23

Exon chaining: Deficiencies

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 89

The optimal chain of intervals may not correspond to
any valid alignment
Solution: Spliced alignment (see book section 6.14)

