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Dynamic programming
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Torgeir R. Hvidsten

This lecture

Sequence alignment
−Edit distance
−Global alignment and scoring
−Local alignment
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g
−Gap penalties
−Multiple alignments

Gene prediction

Dynamic programming

DNA sequence comparison: 
First success story 

In 1984 Russell Doolittle and colleagues  
found similarities between a cancer-causing 
gene and a normal growth factor (PDGF) 
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g g ( )
gene using a database search
Finding sequence similarities with genes of 
known function is a common approach to 
infer the function of a newly sequenced gene

v = ATCTGATGn = 8
w = TGCATAC m = 7

match mismatch

4 matches
1 mismatches
2 insertions
2 deletions

Aligning DNA sequences
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A T C T G A T G
T G C A T A C

v
w

deletion
insertionindels
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Edit distance
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Hamming distance (I)

Given two DNA sequences v and w :

v : ATATATAT
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w: TATATATA

The Hamming distance dH(v, w) =  8 is large, but 
the sequences are very similar

Hamming distance (II)

By shifting one sequence over one position

v : ATATATAT-
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w: -TATATATA

the distance is dH(v, w) =  2

Hamming distance neglects insertions and 
deletions in DNA

Edit distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number of 
elementary operations (insertions, deletions, and 
substitutions) to transform one string into the
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substitutions) to transform one string into the 
other

d(v,w) = minimum number of elementary 
operations to transform v into w
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Hamming distance vs Edit distance 

V = ATATATAT V = - ATATATAT

Hamming distance 
always compares the
ith letter of  v with the
ith letter of  w

Edit distance 
may compare the
i-th letter of  v with the
j-th letter of  w
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W = TATATATA

Hamming distance: Edit distance: 
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find which j goes with which i ?

W = TATATATA-

Longest common subsequence (LCS) –
alignment without mismatches

Given two sequences 
v = v1 v2…vm

w = w1 w2…wn

The LCS of v and w is the longest sequence of
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The LCS of v and w is the longest sequence of 
positions 

v : 1 < i1 < i2 < … < ik < m
w : 1 < j1 < j2 < … < jk < n

such that
kt1wv

tt ji ≤≤= for  

LCS: Example

– T G C T – A – C

A T – C T G A T C

elements of  v

elements of  w
A

–

2

1

1

0

2

2

3

3

3

4

4

5

5

5

6

6

7

6

8

7

j coords:

i coords:

0

0
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Matches shown in red
positions in v :
positions in w : 

1 < 3 < 5 < 6 < 7

2 < 3 < 4 < 6 < 8

TCTAC is a common subsequence of  v and w

Every common subsequence is a path in 2-D grid

Edit graph for the LCS problem

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path from 
source to sink is a 
common 
subsequence (CS)

source
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C

A

T

A

C

3

4

5

6

7

Every diagonal edge 
adds an extra 
element to the CS

LCS Problem:
Find the path with 
the maximum 
number of  diagonal 
edgessink
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Edit graph for the LCS problem

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Deletion

Matches
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C

A

T

A

C

3

4

5

6

7

Insertion

LCS: Dynamic programming
Goal: Find the LCS of two strings
Input: A weighted graph G, where diagonals are 
+1 edges, with two distinct vertices, one 
labeled “source” one labeled “sink”
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Output: A longest path in G from “source” to 
“sink”

Computing LCS (I)

Let vi =   prefix of  v of  length i:    v1 … vi

and wj =  prefix of  w of  length j:   w1 … wj
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The length of  LCS(vi,wj) is computed by:

si, j = max

si-1, j

si, j-1

si-1, j-1 + 1 if   vi = wj

Computing LCS (II)

si, j = max

si-1, j + 0

si, j-1 + 0

si-1, j-1 + 1 if   vi = wj

Insertion

Deletion

Match
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i,j

i-1,j

i,j -1

i-1,j -1
1 0

0
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LCS algorithm
LCS(v, n, w, m)
1 for i ← 1 to n
2 si, 0 ← 0
3 for j ← 1 to m
4 s0 j← 0
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4 s0, j ← 0
5 for i ← 1 to n
6 for j ← 1 to m

si-1, j
8 si, j ←  max si, j-1

si-1, j-1 + 1, if vi = wj
10   return sn, m

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: initiation
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C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 1, j = 1... m

0 1 1 1 1 1 1 1
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A

T
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3

4

5

6

7

0

0

0

0

0

T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 2, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2
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T

G

1

2

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

Example: For i = 3 ... n, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2
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C

A

T

A

C

3

4

5

6

7

0

0

0

0

0

0 1 2 2 2 2 2 3

1 1 2 2 2 3 3 3

1 2 2 3 3 3 4 4

1 2 2 3 3 4 4 4

1 2 3 3 3 4 4 5

LCS Runtime

It takes O(nm) time to fill in the n × m dynamic 
programming matrix

Th d d i f d “f ” l
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The pseudocode consists of a nested “for” loop 
inside of another “for” loop to set up a n × m
matrix

What’s so great about 
dynamic programming?

A naive exhaustive search would have the 
running time O(3f(n,m))
An exhaustive search would recompute the same 
subpaths several times
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subpaths several times
Dynamic programming takes advantage of the 
rich computational structure in the search space, 
and reuse already computed subpaths

Traversing the edit graph 

3 different strategies:
−a) Column by column
−b) Row by row

) Al di l

a) b)
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−c) Along diagonals
c)
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Align sequences in subquadratic time

Divide and conquer techniques can be used to 
solve the LCS problem in O(n2/log n) time

n
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Solve mini-alignment 
problemsn/t

Global alignment and scoring
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From LCS to alignment

The Longest Common Subsequence (LCS) 
problem is the simplest form of sequence 
alignment
We scored 1 for matches and 0 for indels
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We scored 1 for matches and 0 for indels
We did not allow mismatches, only insertions 
and deletions

Simple scoring

Mismatches are penalized by –μ, 
Indels are penalized by –σ, 
Matches are rewarded with +1
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The resulting score is:
#matches – μ · #mismatches – σ· #indels
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The global alignment problem

Goal: Find the best alignment between two strings under 
a given scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score
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Output : Alignment of maximum score

si-1, j – σ

si,j =  max si, j-1 – σ
si-1, j-1 – µ if  vi ≠ wj
si-1, j-1 + 1 if  vi = wj

Scoring matrices

To generalize scoring, consider a (4+1) × (4+1) scoring 
matrix δ
In the case of an amino acid sequence alignment, the 
scoring matrix would be (20+1) × (20+1) 
Th ddi i f 1 i i l d h f
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The addition of 1 is to include the score for 
comparison of a gap character “-” (indels)

si-1, j + δ (vi, -)
si,j = max si, j-1 + δ (-, wj) 

si-1, j-1 + δ (vi, wj)

Making a scoring matrix

Scoring matrices are created based on biological 
evidence
Alignments can be thought of as two sequences 
that differ due to mutations
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that differ due to mutations
Some of these mutations have little effect on the 
protein’s function, therefore some penalties, δ(i, j),
will be less harsh than others
δ(i, j) ≈ how often do amino acid i substitutes 
amino acid j in alignments of related proteins

Scoring matrix: Example
Notice that although R
and K are different amino 
acids, they have a positive 
score

A R N K

A 5 -2 -1 -1

R - 7 -1 3
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Why? They are both 
positively charged amino 
acids and will not greatly 
change the function of 
protein

N - - 7 0

K - - - 6
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Scoring matrices

Amino acid substitution matrices
−PAM
−BLOSUM
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DNA substitution matrices
−DNA is less conserved than protein sequences
−Less effective to compare coding regions at 

nucleotide level

PAM

Point Accepted Mutation
1 PAM = PAM1 = 1% average change of all amino acid 
positions
After 100 PAMs of evolution, not every residue 
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will have changed
− some residues may have mutated several times
− some residues may have returned to their 

original state
− some residues may not changed at all

PAMX

PAMx = PAM1
x

−PAM250 = PAM1
250

PAM250 is a widely used scoring matrix:
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Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys ...
A    R    N    D    C    Q    E    G    H    I    L    K  ...

Ala A 13    6    9    9    5    8    9   12    6    8    6    7  ...
Arg R 3   17    4    3    2    5    3    2    6    3    2    9
Asn N 4    4    6    7    2    5    6    4    6    3    2    5
Asp D 5    4    8   11    1    7   10    5    6    3    2    5
Cys C 2    1    1    1   52    1    1    2    2    2    1    1
Gln Q 3    5    5    6    1   10    7    3    7    2    3    5
...
Trp W 0    2    0    0    0    0    0    0    1    0    1    0
Tyr Y 1    1    2    1    3    1    1    1    3    2    2    1
Val V 7    4    4    4    4    4    4    4    5    4   15   10

BLOSUM

Blocks Substitution Matrix 
Scores derived by observing the frequencies of 
substitutions in blocks of local alignments in 
related proteins
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related proteins
Matrix name indicates evolutionary distance
− BLOSUM62 was created using sequences sharing no 

more than 62% sequence identity
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BLOSUM50
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Local alignment
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Local vs. global alignment (I)

The Global alignment problem : find the longest 
path between vertices (0,0) and (n,m) in the edit 
graph
The Local alignment problem tries to find the
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The Local alignment problem tries to find the 
longest path between arbitrary vertices (i, j) and 
(i’, j’) in the edit graph
In the edit graph with negative scores, local 
alignment may score higher than global 
alignment

Local vs. global alignment (II)

Global Alignment
--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
|  || |  ||  | | | |||    || | | |  | ||||   |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C
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Local Alignment—better alignment to find 
conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
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Local vs. global alignment (III)

Local alignment
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Global alignment

The local alignment problem

Goal: Find the best local alignment between two 
strings
Input : Strings v, w and scoring matrix δ
O Ali f b i f d
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Output : Alignment of substrings of v and w
whose alignment score is maximum among all 
possible alignment of all possible substrings

Free rides

Vertex (0,0)

Yeah, a free ride!
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The dashed edges represent the free rides from 
(0,0) to every other node.

The local alignment recurrence
The largest value of  si,j over the whole edit graph 
is the score of  the best local alignment

0

si 1 j + δ (vi, –)
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The 0 is the only difference from the recurrence 
of  the global alignment problem

si,j =  max si-1, j δ (vi, )
si, j-1 + δ (–, wj)
si-1, j-1 + δ (vi, wj)
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Gap penalties
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Scoring indels: Naive approach

A fixed penalty σ is given to every indel:
− -σ for 1 indel, 
− -2σ for 2 consecutive indels,
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− -3σ for 3 consecutive indels, etc
Can be too severe penalty for a series of 100
consecutive indels

In nature, a series of k indels often come as a 
single event rather than a series of k single 
nucleotide events:

ATA GC ATAG GC

Gap penalties
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ATA– –GC ATAG– GC
ATATTGC AT– GTGC

Normal scoring would 
give the same score for 
both alignments

This is more likely This is less likely

Accounting for gaps

Score for a gap of length x is: 
-(ρ + σx)

where ρ > 0 is the penalty for introducing a gap: 
gap opening penalty

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 48

g p p g p y
ρ will be large relative to σ:

gap extension penalty
because you do not want to add too much of a 
penalty for extending the gap
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Adding “penalty” edges to the edit graph

To reflect gap penalties we 
have to add “long” horizontal
and vertical edges to the edit 
graph of weight: - ρ - x·σ
This increases the running
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This increases the running 
time of the alignment 
algorithm by a factor of n
(where n is the number of 
vertices)
So the complexity increases 
from O(n2) to O(n3)

The three recurrences for the scoring algorithm 
creates a 3-layered graph
The upper level creates/extends gaps in the 
sequence w

Gap penalties and 3 layer edit graphs
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sequence w
The lower level creates/extends gaps in 
sequence v
The main level extends matches and mismatches

3 layer edit grap

ρ

σ
δ

δ
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ρ

σ

δ

δ
δ

Gap penalty recurrences

si, j = max
s i-1, j – σ
si-1, j – (ρ+σ)

si j = max
s i, j-1 – σ

Continue gap in w (insertion): upper level

Start gap in w (insertion): from main level

Continue gap in v (deletion): lower level
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si-1, j-1 + δ (vi, wj)

si, j = max s i, j
s i, j

si, j  max
si, j-1 – (ρ+σ) Start gap in v (deletion): from main level

Match or mismatch: main level

End insertion: from upper level

End deletion: from lower level
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BLAST (I)

Basic Local Alignment Search Tool (BLAST) 
finds regions of local similarity between 
sequences
The program compares nucleotide or protein
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The program compares nucleotide or protein 
sequences to sequence databases and calculates 
the statistical significance of matches

BLAST (II)

First stage: Identify exact matches of length W 
(default W=3 ) between the query and the 
sequences in the database
Second stage: Extend the match in both 

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 54

g
directions in an attempt to boost the alignment 
score (insertions and deletions are not 
considered)
Third stage: If a high-scoring ungapped 
alignment is found: Perform a gapped local 
alignment using dynamic programming

Multiple alignments
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Multiple alignment 

A faint similarity between two sequences becomes 
significant if present in many
Multiple alignments can reveal subtle similarities that 
pairwise alignments do not reveal
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p g

A T – G C G –
A – C G T – A
A T C A C – A
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2D vs 3D edit graph

v

w

v

w

u
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2-D edit graph

3-D edit graph

Architecture of 3D edit graph
(i-1,j-1,k-1)

(i-1,j-1,k) (i-1,j,k)

(i-1,j,k-1)
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(i,j-1,k-1)

(i,j-1,k) (i,j,k)

(i,j,k-1)

Multiple alignment of three sequences: 
Dynamic programming

si,j,k = max

si-1,j-1,k-1 +  δ(vi, wj, uk)
si-1,j-1,k + δ (vi, wj, _ )
si-1,j,k-1 + δ (vi, _,  uk)
si,j-1,k-1 + δ (_, wj, uk)
s + δ (v )
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δ(x, y, z) is an entry in the 3D scoring matrix

si-1,j,k + δ (vi, _ , _)
si,j-1,k + δ (_, wj, _)
si,j,k-1 + δ (_, _, uk)

Multiple alignment: Running time

For three sequences of length n, the run time is 
O(n3)
For k sequences, build a k-dimensional edit 
graph with run time O(nk)
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graph, with run time O(nk)

Conclusion: dynamic programming approach for 
alignment between two sequences is easily 
extended to k sequences, but it is impractical due 
to exponential running time
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Multiple alignment induces 
pairwise alignments

Every multiple alignment:

x: AC-GCGG-C
y: AC-GC-GAG

GCCGC GAG
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z: GCCGC-GAG

induces pairwise alignment:

x: ACGCGG-C  x: AC-GCGG-C  y: AC-GCGAG
y: ACGC-GAC  z: GCCGC-GAG  z: GCCGCGAG

Reverse problem: Constructing multiple 
alignment from pairwise alignments

Given three pairwise alignments:

x: ACGCTGG-C  x: AC-GCTGG-C  y: AC-GC-GAG
y: ACGC--GAC  z: GCCGCA-GAG  z: GCCGCAGAG
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can we construct the multiple alignment that induces them?

Can combine pairwise 
alignments into multiple 
alignment

Combining optimal pairwise alignments 
into multiple alignment
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Can not combine pairwise 
alignments into multiple 
alignment

Profile representation of multiple alignment
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G 

A 1              1       .8        
C .6           1       .4  1    .6 .2
G 1 2 2 4 1 os

iti
on

 
Sc

or
in

g 
rix
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G 1 .2                .2       .4  1
T .2              1    .6             .2
- .2       .8                   .4 .8 .4

In the past we were aligning a sequence against a sequence
With profiles we can align a sequence against a profile and 
even a profile against a profile

PS
SM

: P
o

Sp
ec

ifi
c 

S
M

at
r



17

Multiple alignment: Greedy approach

Choose most similar pair of strings and combine into a 
profile, thereby reducing the alignment of k sequences to an 
alignment of of k-1 sequences/profiles. Repeat!
This is a heuristic greedy method
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u1= ACGTACGTACGT…

u2 = TTAATTAATTAA…

u3 = ACTACTACTACT…

…

uk = CCGGCCGGCCGG

u1= ACg/tTACg/tTACg/cT…

u2 = TTAATTAATTAA…

…

uk = CCGGCCGGCCGG…
k

k-1

CLUSTALW (I)

1. Determine all pairwise alignments between sequences 
and the degree of similarity between them.

2. Construct a similarity tree. 
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3. Combine the alignments from 1 in the order specified 
in 2 using the rule "once a gap always a gap“.

CLUSTALW (II)
1. Determine all pairwise alignments between sequences and the degree of 

similarity between them.
2. Construct a similarity tree. 
3. Combine the alignments from 1 in the order specified in 2 using the rule 

"once a gap always a gap“.

Details: 
1 1 clustalw uses a pairwise alignment to compute pairwise alignments
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1.1. clustalw uses a pairwise alignment to compute pairwise alignments. 
1.2. Using the alignments from 1.1 it computes a distance. 
1.2.1. The distance is calculated by looking at the non-gapped positions and 
count the number of mistmatches between the two sequences. Then divide 
this value by the number of non-gapped pairs to calculate the distance. Once 
all distances for all pairs are calculated they go into a matrix.

CLUSTALW (III)
1. Determine all pairwise alignments between sequences and the degree of 

similarity between them.
2. Construct a similarity tree. 
3. Combine the alignments from 1 in the order specified in 2 using the rule 

"once a gap always a gap“.

Details:
2 Using the matrix from 1 2 1 and Neighbor Joining* Clustalw constructs the

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 68

2. Using the matrix from 1.2.1. and Neighbor-Joining*, Clustalw constructs the 
similarity tree. The root is placed in the middle of the longest chain of 
consecutive edges. 

* Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing 
phylogenetic trees. Mol. Biol. Evol., 4: 406-425
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CLUSTALW (IV)
1. Determine all pairwise alignments between sequences and the degree of 

similarity between them.
2. Construct a similarity tree. 
3. Combine the alignments from 1 in the order specified in 2 using the rule 

"once a gap always a gap“.

Details:
2 Combine the alignments starting from the closest related groups (going
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2. Combine the alignments, starting from the closest related groups (going 
from the tips of the tree towards the root).

Phylogeny-aware gap 
placement (I)

A. Löytynoja and N. Goldman. Phylogeny-
Aware Gap Placement Prevents Errors in 
Sequence Alignment and Evolutionary 
Analysis. Science 320: 1632-35, 2008.
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Conclusion:
“The resulting alignments may be fragmented 
by many gaps and may not be as visually 
beautiful as the traditional alignments, but if 
they represent correct homology, we have to get 
used to them.”

Phylogeny-aware gap placement (II)
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PSI-BLAST

Position-Specific Iterative (PSI) BLAST detect weak 
relationships between the query and sequences in the 
database (higher sensitivity than BLAST)
PSI-BLAST first constructs a multiple alignment from 
the highest scoring hits in a initial BLAST search and 
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g g
generate a profile from this alignment i.e. PSSM
The profile is used to iteratively perform additional 
BLAST searches (called iterations) and the results of 
each iteration is used to refine the profile
The iteration stops when no new matches with a 
satisfactory score are obtained
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Method power
You want to find homologous proteins to a specific protein A 
using some computational method X:

All proteins in the database

Sensitivity: TP/(TP+FN)
Specificity: TN/(TN+FP)

Homologous to A

Predicted by X to be 
homologous to A

TP

TN

FP

FN

Gene prediction
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Gene prediction problem

Gene: A sequence of nucleotides coding for 
protein

G di i bl D i h
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Gene prediction problem: Determine the 
beginning and end positions of genes in a 
genome

Central dogma

DNA

transcription

CCTGAGCCAACTATTGATGAA
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Protein

RNA

translation

PEPTIDE

CCUGAGCCAACUAUUGAUGAA
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Translating nucleotides into amino acids

Codon: 3 consecutive nucleotides
43 = 64 possible codons
Genetic code is degenerative and redundant
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Includes start and stop codons
An amino acid may be coded by more than one 
codon

Discovery of split genes

In 1977, Phillip Sharp 
and Richard Roberts 
experimented with 
mRNA of hexon, a viral 
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protein
mRNA-DNA hybrids 
formed three curious 
loop structures instead of 
contiguous duplex 
segments

Exons and introns (I)

In eukaryotes, the gene is a combination of coding 
segments (exons) that are interrupted by non-coding 
segments (introns) 
This makes computational gene prediction in 
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eukaryotes even more difficult
Prokaryotes don’t have introns - genes in prokaryotes 
are continuous

Exons and introns (II)
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Two approaches to gene prediction

Statistical: based on detecting subtle statistical 
variations between coding (exons) and non-
coding regions 
Similarity based: many human genes are similar
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Similarity-based: many human genes are similar 
to genes in mice, chicken, or even bacteria. 
Therefore, already known mouse, chicken, and 
bacterial genes may help to find human genes

Gene prediction: 
Similarity-based approach
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y pp

Similarity-based approach to 
gene prediction

Genes in different organisms are similar
The similarity-based approach uses known genes 
in one genome to predict genes in another 
genome
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genome
Problem: Given a known gene and an 
unannotated genome sequence, find a set of 
substrings in the genomic sequence whose 
concatenation best fits the known gene

Local alignment gives candidate exons

Frog G
e
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Human Genome

nes (know
n)
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Exon chaining problem

Exon chaining problem: Given a set of weighted 
candidate exons, find a maximum set of non-
overlapping exons
Candidate exon (l, r, w) : left position, right position, 
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p g p
weight (defined as the score of the local alignment)

Input: a set of weighted intervals (putative exons):
Output: A maximum chain of intervals from this set

Exon chaining problem: 
Graph representation

This problem can be solved with dynamic programming 
in O(n) time
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Exon chaining algorithm
ExonChaining (G, n)
1 for i ← to 2n
2 si ← 0
3 for i ← 1 to 2n
4 if vertex v in G corresponds to the right end of an interval I
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4 if vertex vi in G corresponds to the right end of an interval I
5 j ← Index of vertex for left end of the interval I
6 w ← Weight of the interval I
7 si ← max {sj + w, si-1}
8 else
9 si ← si-1
10 return s2n

Example
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Exon chaining: Deficiencies
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The optimal chain of intervals may not correspond to 
any valid alignment
Solution: Spliced alignment (see book section 6.14)


