
Exercise 1 
Deadlines: Tuesday 2008.09.16 (copy) and Tuesday 2008.09.23 (corrected) 

PROBLEM 1 

Write two algorithms that iterate over every index combination from (0, 0, ..., 0) to (n1, 
n2, ..., nd). Make one algorithm iterative and the other recursive. What application do you 
see for this algorithm? 

PROBLEM 2 

Fibonacci’s model of rabbit expansion: One pair of adult rabbits creates a new pair of 
rabbits in the same time that it takes bunnies to grow into adults (i.e. one year). Thus the 
number of rabbits at time n is Fn = Fn-1 + Fn-2, where F1 = F2 = 1. The intuition behind 
this is that the number of adult rabbits at time n is the number of rabbits (adults and 
babies) at time n-1, i.e. Fn-1, while the number of baby rabbits at time n is the number of 
adult rabbits at time n-1, which is Fn-2. 
 
Propose a more realistic model of the rabbit life (and death) that limits the life span of 
rabbits by k = 2.999 years. Then the corresponding sequence grows more slowly than the 
Fibonacci sequence. Write a recurrence relation and pseudo-code to compute the 
number of rabbits under this model. Will the number of rabbits ever exceed the number 
of atoms in the universe under these assumptions? 

PROBLEM 3 

Let x = n. 
 
Is log n = O(x)? 
Is log n =Ω(x)? 
Is log n = Θ(x)? 
 
If the answer is “no” to any of the questions, restate the question by changing x so that 
the answer is “yes”. 

PROBLEM 4 

A multiset ΔX is the set of all pairwise positive distances between elements in an order 
set X, e. g. the multiset of X = {0, 2, 4, 7, 10} is ΔX = {2,2,3,3,4,5,6,7,8,10}. 
 
Write an algorithm that, given the set X, calculates the multiset ΔX.  



PROBLEM 5 

Consider the partial digest 
 
 L= {1,1,1,2,2,3,3,3,4,4,5,5,6,6,6,9,9,10,11,12,15} 
 
Use the PartialDigest algorithm below to solve the partial digest problem for L (i.e. find 
X such that ΔX = L). Illustrate the recursive calls by drawing a tree. 
 
PartialDigest(L) 
1 width ← Maximum element in L 
2 Remove width from  L 
3 X ← {0, width} 
4 Place(L, X) 
 
Place(L,X) 
1 if L is empty 
2    output X 
3  return 
4 y ← Maximum element in L 
5 if Δ(y, X ) ⊆  L 
6  Remove lengths Δ(y, X) from L and add y to X 
7  Place(L, X ) 
8  Remove y from X and add lengths Δ(y, X) to L 
9 if Δ(width – y, X ) ⊆  L 
10  Remove lengths Δ(width – y, X) from L and add width – y to X and 
11  Place(L, X ) 
12  Remove width – y from X and add lengths Δ(width – y, X ) to L 
13 return 
 

PROBLEM 6 

A complete k-ary tree is a tree where each vertex that is not a leaf has exactly k children. It 
is also balanced since the number of edges in the path from the root to any leaf is the same 
(often referred to as the height of the tree). Find a closed-form expression for the total 
number of vertices in a complete and balanced k-ary tree of height L. 



PROBLEM 7 

Derive a tighter bound for the branch-and-bound strategy for the median string problem 
(see the BrachAndBoundMedianSearch algorithm below). 
 
Hint: Split the l-mer w into two parts, u and v. Use TotalDistance(u,DNA) + 
TotalDistance(v,DNA) to bound TotalDistance(w,DNA). Take advantage of the fact that 
you might already have computed the best distances for substrings of length |v|. 
 
BranchAndBoundMedianStringSearch(DNA,t,n,l ) 
1 s ← (1,1,…,1) 
2 bestDistance ← ∞ 
3 i ← 1 
4 while i > 0 
5  if i < l 
6   prefix ← Nucleotide string corresponding to (s1, s2, …, si) 
7   optimisticDistance ← TotalDistance(prefix,DNA) 
8   if optimisticDistance > bestDistance 
9       (s, i ) ← Bypass(s,i, l, 4) 
10   else  
11    (s, i ) ← NextVertex(s, i, l, 4) 
12  else  
13   word ← Nucleotide string corresponding to (s1, s2, …, sl) 
14   if  TotalDistance(s,DNA) < bestDistance 
15    bestDistance ← TotalDistance(word, DNA) 
16    bestWord ← word 
17   (s,i) ← NextVertex(s,i,l, 4) 
18 return bestWord 
 


