Exercise I

Deadlines: Tuesday 2008.09.16 (copy) and Tuesday 2008.09.23 (corrected)

PROBLEM

Write two algorithms that iterate over every index combination from (0, 0, ..., 0) to $(n_1, n_2, ..., n_d)$. Make one algorithm iterative and the other recursive. What application do you see for this algorithm?

PROBLEM 2

Fibonacci's model of rabbit expansion: One pair of adult rabbits creates a new pair of rabbits in the same time that it takes bunnies to grow into adults (i.e. one year). Thus the number of rabbits at time *n* is $F_n = F_{n-1} + F_{n-2}$, where $F_1 = F_2 = 1$. The intuition behind this is that the number of adult rabbits at time *n* is the number of rabbits (adults and babies) at time *n*-1, i.e. F_{n-1} , while the number of baby rabbits at time *n* is the number of adult rabbits at time *n*-1, while the number of baby rabbits at time *n* is the number of adult rabbits at time *n*-1, while the number of baby rabbits at time *n* is the number of adult rabbits at time *n*-1, while the number of baby rabbits at time *n* is the number of adult rabbits at time *n*-1, which is F_{n-2} .

Propose a more realistic model of the rabbit life (and death) that limits the life span of rabbits by k = 2.999 years. Then the corresponding sequence grows more slowly than the Fibonacci sequence. Write a recurrence relation and pseudo-code to compute the number of rabbits under this model. Will the number of rabbits ever exceed the number of atoms in the universe under these assumptions?

PROBLEM 3

Let x = n.

Is log n = O(x)? Is $log n = \Omega(x)$? Is $log n = \Theta(x)$?

If the answer is "no" to any of the questions, restate the question by changing x so that the answer is "yes".

PROBLEM 4

A multiset $\[tabel{eq:alpha}]X$ is the set of all pairwise positive distances between elements in an order set X, e. g. the multiset of $X = \{0, 2, 4, 7, 10\}$ is $\[tabel{eq:alpha}]X = \{2, 2, 3, 3, 4, 5, 6, 7, 8, 10\}$.

PROBLEM 5

Consider the partial digest

 $L = \{1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11, 12, 15\}$

Use the PartialDigest algorithm below to solve the partial digest problem for L (i.e. find X such that $\Box X = L$). Illustrate the recursive calls by drawing a tree.

PartialDigest(L)

1	width \leftarrow Maximum element in L
2	Remove <i>width</i> from L
_	

3 $X \leftarrow \{0, width\}$

4 Place(L, X)

Place(L,X)

1 if L is empty 2 output X3 return 4 $y \leftarrow$ Maximum element in L 5 if $\Delta(y, X) \subset L$ 6 Remove lengths $\Delta(y, X)$ from *L* and add *y* to *X* 7 Place(L, X)8 Remove *y* from *X* and add lengths $\Delta(y, X)$ to *L* 9 if $\Delta(width - y, X) \subset L$ 10 Remove lengths $\Delta(width - y, X)$ from L and add width - y to X and 11 Place(L, X)12 Remove *width* – *y* from *X* and add lengths $\Delta(width - y, X)$ to *L* 13 return

PROBLEM 6

A *complete k-ary* tree is a tree where each vertex that is not a leaf has exactly k children. It is also *balanced* since the number of edges in the path from the root to any leaf is the same (often referred to as the *height* of the tree). Find a closed-form expression for the total number of vertices in a complete and balanced k-ary tree of height L.

PROBLEM 7

Derive a tighter bound for the branch-and-bound strategy for the median string problem (see the BrachAndBoundMedianSearch algorithm below).

Hint: Split the *l*-mer *w* into two parts, *u* and *v*. Use TotalDistance(u,**D**NA) + TotalDistance(v,**D**NA) to bound TotalDistance(w,**D**NA). Take advantage of the fact that you might already have computed the best distances for substrings of length |v|.

BranchAndBoundMedianStringSearch(**DNA**,t,n,l)

1	$s \leftarrow (1,1,\ldots,1)$
2	$best Distance \leftarrow \infty$
3	$i \leftarrow 1$
4	while $i > 0$
5	if $i < l$
6	<i>prefix</i> \leftarrow Nucleotide string corresponding to (s_1, s_2, \dots, s_n)
7	optimisticDistance \leftarrow TotalDistance(prefix, DNA)
8	if optimisticDistance > bestDistance
9	$(\mathbf{s}, i) \leftarrow \mathrm{Bypass}(\mathbf{s}, i, l, 4)$
10	else
11	$(\mathbf{s}, i) \leftarrow \text{NextVertex}(\mathbf{s}, i, l, 4)$
12	else
13	word \leftarrow Nucleotide string corresponding to (s_1, s_2, \dots, s_l)
14	if TotalDistance(<i>s</i> , <i>DNA</i>) < <i>bestDistance</i>
15	<i>bestDistance</i> \leftarrow TotalDistance(<i>word</i> , DNA)
16	$bestWord \leftarrow word$
17	$(s,i) \leftarrow \text{NextVertex}(s,i,l,4)$
18	return bestWord