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Introduction

The high-resolution three-dimensional structure of a protein is
the key to the understanding and manipulation of its biochem-
ical and cellular functions. However, the rate of protein struc-
ture determination by X-ray crystallography lags behind the
rate of determination of new protein sequences. As of May
2005, the National Center for Biotechnology Information’s
Non-Redundant (nr) GenPept database[1] contained 2456090
sequences, while the Protein Data Bank[2] contained only
21177 proteins structures with non-redundant sequences
(30672 structures in total). The size of the sequence database
doubles approximately every 18 months, while that of the
structure database doubles every three years, so the gap be-
tween the number of known structures and the number of
known sequences will continue to widen in the foreseeable
future and it is unlikely that it will ever be closed, that is, struc-
tures will never be solved experimentally for all proteins.
More than 40 years ago, Anfinsen demonstrated that all of

the information necessary for RNase A to fold into its native
structure is contained in its amino acid sequence.[3] This finding
has been generalized to most globular proteins, suggesting
that a protein’s structure could be calculated (modeled) from
knowledge of its sequence and our understanding of the se-
quence–structure relationships. The current structural genom-
ics initiative aims to solve experimentally the structures of only
the most important or most representative proteins, while it is
hoped that the others may be modeled computationally.[4] The
theoretical prediction of the native structure of a protein from
its amino acid sequence, however, remains one of the most
challenging problems in contemporary life sciences.

Protein-structure prediction Methods—
Classification and Critical Evaluation

Efforts to solve the protein folding problem have traditionally
been rooted in two schools of thought (Figure 1). One is based

on the principles of physics: that is, on the thermodynamic
hypothesis formulated by Anfinsen, according to which the
native structure of a protein corresponds to the global mini-
mum of its free energy.[5] Accordingly, physics-based methods
model the process of protein folding by simulating the confor-
mational changes and searching for the free-energy minimum.
The other school of thought is based on the principles of evo-
lution. After experimental determination of the first handful of
protein structures it became clear that evolutionarily related
(homologous) proteins usually retain the same three-dimen-
sional fold (i.e. , the arrangement and connectivity of elements
of secondary structure) despite the accumulation of divergent
mutations.[6] It was also found that structural divergence is
much slower than sequence divergence, although these two
features are strongly correlated. Thus methods have been de-
veloped to map the sequence of one protein (a target) to the
structure of another protein (a template), to model the overall
fold of the target based on that of the template, and to infer
how the target structure will be changed, relative to the tem-
plate, as a result of substitutions, insertions, and deletions (for
reviews, see refs. [7, 8]).
Accordingly, methods for protein-structure prediction have

been divided into two classes: de novo modeling, in principal
applicable to all types of proteins, including those for which
no appropriate templates are available, and comparative (ho-
mology) modeling (CM), in which the target sequence must be
aligned to an evolutionarily related, experimentally solved tem-
plate structure. The de novo approach can be further subdivid-
ed into ab initio methods (that is, those based exclusively on
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The field of protein-structure prediction has been revolutionized
by the application of “mix-and-match” methods both in tem-
plate-based homology modeling and in template-free de novo
folding. Consensus analysis and recombination of fragments
copied from known protein structures is currently the only ap-
proach that allows the building of models that are closer to the
native structure of the target protein than the structure of its
closest homologue. It is also the most successful approach in

cases in which the target protein exhibits a novel three-dimen-
sional fold. This review summarizes the recent developments in
both template-based and template-free protein structure model-
ing and compares the available methods for protein-structure
prediction by recombination of fragments. A convergence be-
tween the “protein folding” and “protein evolution” schools of
thought is postulated.
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the physics of the interactions within the polypeptide chain
and between the polypeptide and the solvent[9]), and “knowl-
edge-based” methods that utilize statistical potentials based
on the analysis of recurrent patterns in known protein struc-
tures and sequences.[10]

The CM approach can also be subdivided into two main
trends. One is to model the structure by copying the coordi-
nates of the template (both the backbone and the side-chains)
in the aligned core regions, which can also include “averaging”
over coordinates of multiple templates. The variable regions
are modeled by taking fragments with similar sequences from
a database of previously observed loops, followed by replace-
ment of the mutated side chains with rotamers that satisfy
the stereochemical criteria, together with (optionally) limited
energy optimization, as implemented in SWISS-MODEL.[11] The
other possibility is to use the distance and torsion angles and
interatomic distances from the aligned regions of the tem-
plate(s) as modeling restraints, which permits the use of infor-
mation from multiple, possibly conflicting, structures. This ap-
proach also requires the idealization of the geometry and
packing of the entire chain through satisfaction of stereochem-
ical constraints derived from the database of protein struc-
tures, as implemented in MODELLER.[12] The CM approach has

been also extended to “fold-recognition” (FR), in which one at-
tempts to identify a template with a similar fold that does not
need to exhibit significant sequence similarity to the target
(i.e. , the target and the template may or may not be homolo-
gous, but they need to share the common fold).[13, 14] While the
early FR methods relied mostly on the “threading” approach
(that is, evaluation of protein energy as the sum of pairwise
residue–residue interactions based on physical or statistical po-
tentials), nearly all contemporary FR methods are based mostly
(or exclusively) on sequence comparisons and are tuned to
detect distantly related homologues rather than unrelated
structural analogues (for reviews, see refs. [15–17]).
In order to make an objective assessment of the abilities

(and inabilities) of different methods for protein-structure pre-
diction, Moult and co-workers organized the biennial Com-
munity-Wide Experiment on the Critical Assessment of Tech-
niques for Protein-structure prediction (CASP). The first assess-
ment experiment (CASP1) was held in 1994 and revealed that
computational methods for protein-structure prediction per-
form quite poorly, those based on physics and evolution
alike.[18] Since then, the progress in the field of protein-struc-
ture prediction has been significant, especially in the template/
knowledge-based category (i.e. , CM and FR), in part due to the
improvement in methodology but mostly because of the rapid
growth of databases and accumulation of new potential tem-
plate structures, as well as of numerous new sequences that
can serve as convenient evolutionary intermediates in homolo-
gy searches.[19]

“Meta” Approaches to Template-Based
Prediction

The series of CASP experiments has shown that the combined
use of human expertise and automated methods can often
result in successful predictions. This has became especially
clear in the cases of very remote homology, where most FR
methods return predictions with scores indicating the lack of
statistical significance and correct models are buried among a
number of incorrect models. A group of four human predic-
tors, Daniel Fischer, Leszek Rychlewski, Arne Elofsson, and the
author of this article, pioneered the idea of meta-prediction in
CASP4, by comparing the models generated by FR servers par-
ticipating in the satellite experiment CAFASP-2 (CAFASP=criti-
cal assessment of techniques for fully automated protein-struc-
ture prediction) and submitting manually selected consensus
predictions as the “CAFASP-CONSENSUS” group. This group per-
formed better than any of the individual servers and ranked
seventh among all predictors of CASP4.[20] It was thus demon-
strated that the recurrence of a particular protein fold within
the sets of top 10 models returned by different servers (and
not necessarily in first position in their ranking) increases the
likelihood of a correct prediction and that, on average, no
single FR method is better than the combination of a few top
methods. Since then, meta-prediction based on FR (Figure 2)
has become the most successful approach for template-based
modeling, and has been applied by a large number of human
predictors, including the best performers in CASP5 and CASP6.

Figure 1. The evolutionary and physical approaches to protein-structure pre-
diction. Given the amino acid sequence, a simulation of either protein evolu-
tion or protein folding is carried out, according to quantitative models of
either divergence of sequences and structures or physical interactions within
the molecule and between the molecule and the solvent.
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Following the proven success of manual meta-predictors,
several groups have implemented fully automated meta-serv-
ers[21–24] (Table 1; for a review, see ref. [25]). One of the earliest
meta-predictors was the neural network PCONS developed by
Elofsson and co-workers,[26] which collects a set of top models
generated by different FR servers and selects the models most
similar to other models in the set. The second edition of an in-
dependent assessment experiment, LiveBench,[27] organized
shortly after CASP4, revealed that PCONS2 (version trained for
a few specific primary FR servers) exhibited a sensitivity com-
parable to that of the most sensitive primary method and a
higher specificity than any primary method. (Unlike CASP,
which employs human assessors to evaluate models submitted
by human predictors and computer programs, Livebench and
CAFASP experiments are focused on the fully automated as-
sessment of methods (servers) that exclude human interven-
tion in the process of protein-structure prediction.) The newest
version of PCONS5, reinforced by the PROQ method for pro-
tein model evaluation,[28] exhibits even higher specificity and is
able to use models generated by any set of methods as input.
3D-JURY, developed by Rychlewski and co-workers,[29] is an-

other automated meta-predictor that simply selects models

from those produced by other servers. It takes as input any set
of models, compares all against all, and selects the one that
appears to contain the largest subset of commonly superim-
posable coordinates. The most important feature contributing
to the success of 3D-JURY and its popularity among users is its
scoring system, which allows confident identification of the
models with correctly predicted folds, even though it does not
necessarily recognize the absolutely best model among similar
top solutions.

From Multiple Template-Based Models to
Hybrids

As well as those meta-predictors that simply select models
from the input set, another breed of meta-predictors that use
the unrefined models generated by primary servers as a struc-
tural scrap-yard from which to obtain spare parts to generate
new models has also been developed. 3D-SHOTGUN, developed
by Fischer,[30] was the first fully automated meta-predictor de-
signed to assemble hybrid models from fragments of models
obtained from independent FR methods (i.e. , from different
components of the BIOINBGU server[31]). In the first step, regions
of structural similarity are identified for all initial models by
pairwise superposition. Subsequently, for each residue in each
model, the number of its occurrences in the superimposed re-
gions of other models is counted and a hybrid model is assem-
bled by taking the coordinates of each residue from a model
with the highest count. Thus, for each initial model, a hybrid
model is constructed, containing the most common structural
features of all models, and often including more residues than
any of the initial models. In the second step, the assembled
models are assigned scores based on a combination of the
original scores of their parent models (normalized to a similar
scale) and scores describing the structural similarity of the as-
sembled model to other models, as determined by MAXSUB.[32]

For each cluster of highly similar assembled models, only one
representative model with the highest score is reported.
The rationale of the 3D-SHOTGUN strategy is the same as in the

consensus methods (selectors) acting on complete models:
namely that recurring structural features observed in models
obtained from different FR methods are more likely to be cor-
rect. The initial version of 3D-SHOTGUN generated models con-
taining only Ca atoms, and commonly exhibited stereochemi-
cal problems such as implausible distances and angles and
steric clashes between fragments taken from different parent
models. In terms of coverage and root mean square deviation
(RMSD) between the model and the native structure, however,
the hybrid model construction approach is superior to selec-
tion of one of the stereochemically more acceptable input
models, as the hybrids are on average more complete and su-
perimpose better than the initial models on the native struc-
ture. The method is sensitive to initial alignment error—if
none of the initial alignments is correct for a given region, it is
unlikely that this region will be modeled correctly in the final
structure. A new automated version SHGUM includes a crude
refinement step, using MODELLER

[12] to generate full-atom models
with idealized stereochemistry and without gaps and collisions,

Figure 2. The meta-server approach for protein-structure prediction. The
meta-server is used as a gateway to send the target sequence to various pri-
mary fold-recognition servers, to collect the results (target–template align-
ments), to build the corresponding models, to compare them with each
other, and either to select the most representative structure or to construct
a hybrid model from the most frequently represented fragments.
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and even with a slight improvement in the overall RMSD.[33]

The method is available via the INUB server at http://fischer
lab.bioinformatics.buffalo.edu/inub/.
FRANKENSTEIN’S MONSTER is another approach to meta-prediction

by consensus and recombination of fragments, developed in
the author’s laboratory.[34] It is similar to 3D-SHOTGUN, but goes
beyond the identification of geometrical consensus by includ-
ing evaluation of the models by statistical potentials and fea-
tures an additional step of local realignment of uncertain re-
gions. This helps not only in overcoming the problem of selec-
tion of the optimal template, but also in correcting initial align-
ment errors. Briefly, the GeneSilico meta-server[23] is used as a
gateway to run diverse FR methods and to generate prelimina-
ry full-atom models from initial pairwise target–template align-
ments. The local quality of sequence–structure fit in these
models is evaluated by a fitness function based on statistical
potentials, such as implemented in VERIFY3D[35] or other similar
methods (for a review, see ref. [36]). The most probable folds
are identified by clustering. For each fold, a hybrid model is as-
sembled from fragments that are structurally similar in >40%
of all preliminary models, while the remaining non-consensus
fragments are selected by the VERIFY3D score. The initial hybrid
model (the FRANKENSTEIN’S MONSTER) typically exhibits stereochemi-
cal problems similar to those found in models generated by
the 3D-SHOTGUN method. However, the hybrid model in the
FRANKENSTEIN strategy is not directly refined, but is instead super-

imposed onto the structures of the templates used, yielding a
new target multiple template sequence alignment, which is
used to generate a new, stereochemically acceptable model by
an orthodox CM procedure. The sequence–structure fit in the
new model is reevaluated with VERIFY3D, and regions of low
local score are selected for further refinement. For each poorly
scored non-consensus region, a set of new alignments is gen-
erated by progressively shifting the target sequence with a
step of 1 aa in the direction of either terminus, within the
region of overlap between the secondary structure elements
found in the template structure and those predicted for the
target. All resulting alignments are used to generate a new
family of intermediate models, which are again evaluated and
recombined to produce a hybrid model. The procedure is iter-
ated until all regions in the protein core obtain an acceptable
score or the score cannot be further improved.
The FRANKENSTEIN’S MONSTER method generates models that

retain the fragments confidently predicted by consensus (re-
gardless of their fitness according to statistical potentials) and
attempts to refine the alignment in the uncertain regions to
maximize the fitness score. As demonstrated in CASP5[34] and
CASP6, in which the groups from the author’s laboratory
ranked very high in the CM and FR categories,[37,38] application
of this approach gives very accurate target-template align-
ments, often more accurate than any of the initial alignments,
provided that a template with a correct fold is identified by at

Table 1. Summary of key features of methods analyzed in this article.

Method Type Search strategy Evaluation/selection of models Input and/or fragment library

SWISS-MODEL CM superposition of templates NA CM templates, loops from PDB
PCONS5 FR/CM meta-

selector
superposition of models statistical potential (PROQ) FR models

3D-JURY FR/CM meta-
selector

superposition of models NA FR models

3D-SHOTGUN FR/CM fragment
splicer

superposition and recombination of
models

NA FR models

FRANKENSTEIN3D FR/CM fragment
splicer

superposition and recombination of
models

statistical potential (VERIFY3D) FR models

in silico protein
recombination

CM fragment
splicer

superposition and recombination of
models, local realignment

statistical potential comparative models with similar
folds

GENETIC ALGORITHM CM alignment
splicer

recombination of alignments, local
realignment

statistical potential alternative target-template
alignments

ROSETTA de novo frag-
ment splicer

Monte Carlo simulated annealing physical energy function with
elements of a statistical potential

3 and 9 aa fragments from PDB

SIMFOLD de novo frag-
ment splicer

Multicanonical Monte Carlo ensemble physical energy function 4–9 aa fragments from PDB

PROFESY de novo frag-
ment splicer

conformational space annealing physical energy function 15 aa fragments from PDB

FRAGFOLD de novo frag-
ment splicer

simulated annealing or genetic algorithm statistical potential supersecondary structures and 3–5 aa
fragments

UNDERTAKER de novo frag-
ment splicer

genetic algorithm statistical potential fragments of FR models, and 1–4 aa
and 9–12 aa fragments from PDB

ABLE de novo frag-
ment splicer

Monte Carlo simulated annealing, iterated
with restraints from previous rounds

physical energy function with
elements of a statistical potential

individual residues

TASSER FR/CM/de novo
fragment splicer

replica exchange Monte Carlo (on a lattice) statistical potential FR models

FRANK/CABS FR/CM/de novo
fragment splicer

replica exchange Monte Carlo (on a lattice) statistical potential FR models

structural
descriptors

FR NA NA descriptors (groups of >2 fragments
>3 aa long)
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least one of the FR servers used. The current version of the
method is available as a FRANKENSTEIN3D server at http://gene
silico.pl/frankenstein3d/
Another approach to overcoming the problem of template

selection and correction of alignment errors by recombination
of alternative models was developed by Bates and co-work-
ers.[39] The in silico Protein Recombination method starts with a
population of models built from alternative alignments to one
or more templates sharing the same fold and uses a genetic al-
gorithm with two mutually exclusive genetic operators: recom-
bination of parent models with crossover points outside the
regions of secondary structure, and mutation by averaging the
coordinates of two parent models. The fitness function acting
as a selection agent is a free energy estimate based on protein
contact pair-potentials and side-chain solvation energies, esti-
mated from their solvent-accessible areas. The method was
shown to be able to improve alignments by recombining well-
aligned regions from the initial models and to produce re-
combinant models that are comparable to the best initial
model.[40] However, the quality of the initial models is the
upper limit for the quality of the final model (i.e. , unlike the
FRANKENSTEIN method, it does not produce new, potentially better
alignments). It is also critically dependent on the confident
identification of a correct fold. The in silico protein-recombina-
tion method is available as a web server at http://www.bmm.
icnet.uk/servers/3djigsaw/recomb/
Another method that implements a genetic algorithm for

comparative modeling was developed by Sali and co-work-
ers.[41] It is similar to the FRANKENSTEIN’S MONSTER approach in that it
continuously refers to the target-template alignments, modifies
them locally, and assesses the result of these changes by evalu-
ation of the corresponding models, generated by MODELLER.[12]

The genetic operators include recombination of the parent
alignments (one- and two-point crossovers) and gap inser-
tions/deletions/shifts that actually generate local changes in
the parent alignment. The fitness function is based on a score
that combines the evaluation of the model by a statistical po-
tential,[42] target-template sequence identity, and a measure of
structural compactness. The method was shown to increase
the average quality of the target-template alignment and the
corresponding models, but is dependent on the initial choice
of the templates; in addition, the inaccurate statistical poten-
tial is generally unable to choose the best model.[41]

Fragment Assembly: A New Trend in de novo
Protein-Structure Prediction

Modeling a protein structure de novo without the template is
very difficult, because the conformational space to be searched
is so vast that it is practically impossible to simulate the fold-
ing of a model that includes all atoms of the polypeptide
chain and the surrounding solvent molecules. Methods and re-
sources currently available allow simulation of up to about 1
microsecond of folding of full-atom representations of only
small proteins (<100 aa), while most proteins are larger and
fold over timescales of milliseconds or even seconds. The sol-

vent is therefore usually treated implicitly and various simpli-
fied models that have fewer degrees of freedom and exploit
the repetitive natures of protein structures are used. These
simplified models typically retain only certain atoms, such as
Ca or Cb or united atoms in which several atoms, such as the
centers of mass of the side-chains, are grouped together.[43,44]

The protein structures may be represented by a number of
simplified schemes such as lattices or bond angles with dis-
crete values.[10,45] Despite the considerable reduction in dimen-
sionality of the structure space in simplified models, the poly-
peptide main chain remains highly flexible and requires many
variables per residue to model the protein conformation accu-
rately.[46]

Significant progress in the field of de novo protein-structure
prediction has been stimulated by the observation that the
structure of a protein backbone can be represented quite ac-
curately through the use of short fragments taken from other
proteins.[47,48] Fragments up to 10 aa long provided an efficient
method for interpreting electron density maps in protein crys-
tallography and in building protein models from nuclear mag-
netic resonance (NMR) data.[49] Classification of protein loops
has proven useful in comparative modeling, in which the in-
complete framework of a protein core has to be amended by
de novo insertion of polypeptide segments[50–52] (see also
above). Several groups have classified peptide backbone units
with fixed or variable lengths into collections of fragments.[53–58]

Analysis of such recurring fragments has identified local se-
quence–structure correlations in proteins[59,60] and suggested a
new method for de novo protein-structure prediction.
ROSETTA, developed by Baker and co-workers,[61] implements a

model of folding in which short fragments of the protein chain
alternate between different local conformations copied from
segments of known, not necessarily homologous, protein
structures. The probability of a particular conformation being
assumed is based on the similarity of the local sequence and
predicted secondary structure of the target to sequences and
structures from the template library, as in the traditional tem-
plate-based methods for protein modeling. The fragments (of
3 and 9 aa residues) are assembled by a Monte Carlo (MC) si-
mulated annealing (SA) search strategy, in which fragments are
randomly inserted into the protein chain by replacement of
the backbone torsion angles with those in the fragment. The
resulting decoy conformation is then evaluated according to a
database-derived pseudoenergy function that rewards native
protein-like properties. Additionally, a number of heuristic fil-
ters can be used to discriminate protein-like decoys by virtue
of contact order, topology of b-sheets, etc. In the standard pro-
tocol, ROSETTA uses a reduced representation with backbone
heavy atoms and Cb atoms explicitly included and the side-
chains represented by single centroids. ROSETTA is also capable
of refinement of models with full-atom representation, special
conformation modification operators, and a refined (more
physical) energy function. During the simulation, a large set of
decoys (1000–100000) are generated, and these are then clus-
tered to identify the largest populations of similar global con-
formations, which correspond to the broadest free energy
minima. Full-atom models with explicit side-chain rotamers can
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be rebuilt before or after clustering (see the recent review of
ROSETTA in ref. [62]).
The difference between ROSETTA and most template-based

methods for fragment recombination lies in the stochastic and
iterative character of this process and in the utilization of mul-
tiple small fragments of different, unrelated proteins (tem-
plate-based methods use the whole structure of one protein
or a few related templates). ROSETTA can thus generate a de
novo model by allowing the full-length polypeptide chain to
explore conformational space by the fragment insertion search
method, even if no homologous or analogous template struc-
ture is available. Nonetheless, if a template structure is avail-
able, the conserved parts of the target can be built as in tradi-
tional CM, while the variable parts are allowed to explore the
conformational space with fragments in fashion similar to the
de novo protocol, but in the context of the template.[63] As
demonstrated in CASP5,[64] ROSETTA is capable of generating
native-like protein models either de novo (i.e. , without any
template structure) or by adding long insertions and N- and C-
terminal extensions to a template that matches only a part of
the modeled protein.
ROSETTA is the only de novo method that has been made

available to the academic community both as a source code of
the standalone program and as a web server. It is available in
two versions: as a part of the ROBETTA meta-server developed by
the Baker group[65] (http://robetta.bakerlab.org/) and in con-
junction with the alternative fragment library I-SITES and the
fragment assignment method HMMSTER (http://www.bioinfo.rpi.
edu/~bystrc/hmmstr/), developed and maintained by the By-
stroff group.[66]

SIMFOLD is another fragment assembly method, recently devel-
oped by Shoji Takada and co-workers.[67] The original method,
which performed quite well in CASP6 as ROKKO and ROKKY,[68]

is similar to ROSETTA. It uses 4- to 9-residue fragments, and its
energy function consists of various interactions that are based
on physical considerations.[69] SIMFOLD exhibits an important dif-
ference, namely, it introduces reversible fragment insertion.
When a new fragment is inserted at a junction between two
fragments the replaced “old” conformation comprising ele-
ments of two different fragments is added to the library of
fragments, so it can be reinserted. This operation is not possi-
ble in ROSETTA, which uses only fragments from the original da-
tabase. This modification satisfies the detailed balance condi-
tion, providing the basis for the application of a multicanonical
ensemble Monte Carlo method (MEMC), as used by the human
team ROKKO in CASP6. MEMC is more effective in finding low-
energy conformations that the conventional SA method[67] im-
plemented in the ROKKY server or in many other methods de-
scribed in this article. SIMFOLD has been made available as a web
server (http://www.proteinsilico.org/), albeit with a heavily lim-
ited functionality in relation to the method used by the
ROKKO team in CASP6 (SA instead of MEMC, limited length of
the simulation, etc.).
PROFESY, developed by Lee and co-workers,[70] is similar to SIM-

FOLD in that it attempts to improve the poor sampling efficiency
of the traditional SA method and uses a physics-based energy
function rather than a statistical potential. The global minimi-

zation of the energy function is thus performed by the confor-
mational space annealing (CSA) method.[71] The fragment li-
brary is constructed by use of the secondary structure predic-
tion method PREDICT and comprises a collection of 15 aa-long
backbone structures. This method is not yet publicly available.
FRAGFOLD, developed by Jones, uses supersecondary structural

fragments (made up of two or three sequential secondary
structures) from a library of high-resolution protein structures
as well as small (3, 4, and 5 aa) fragments.[72,73] Possible super-
secondary fragments are assigned to the target sequence by a
threading procedure similar to that used in the GenTHREADER FR
algorithm.[74] The global structure is assembled by a genetic al-
gorithm or a simulated annealing method, in which half the
random moves correspond to the insertion of a preselected su-
persecondary structure fragment and the other half involve a
completely free choice of one of the small fragments. Confor-
mations that lack steric clashes and pass the checks for pro-
tein-like compactness and hydrogen bonding are clustered to
identify representatives of the most probable folds. FRAGFOLD is
not yet publicly available.
UNDERTAKER is a method developed by Karplus and co-workers

that assembles the target structure by use of fragments of
known structures obtained from three sources: a generic li-
brary of very short segments (1–4 aa) that must exactly match
the target sequence, medium-length segments (9–12 aa) that
are assigned by the FRAGFINDER program from the SAM suite, and
variable-length segments assigned by FR analysis.[75] In addi-
tion to fragment replacement, UNDERTAKER implements an align-
ment replacement operation in which a complete FR match is
imported into the model, allowing the replacement of several
segments at once in the same orientation as they occur in the
template structure. UNDERTAKER uses a genetic algorithm for the
stochastic search and includes a crossover operation that
allows recombination of different conformations. The cost
function used to assess the decoys includes many tunable pa-
rameters, the most important of which—as the name of the
method implies—is the burial. UNDERTAKER is not yet publicly
available.
ABLE, developed by Shimizu and co-workers,[76] is also based

on fragment assembly, but it assigns main-chain dihedral
angles individually to each residue. The energy function is simi-
lar to that used in ROSETTA. The ABLE method has two interesting
features that help in avoiding problems if the initial distribu-
tion of decoys is too broad and no clusters can be identified
from the RMSD as a measure of the distance between the con-
formations. Firstly, it uses the unit-vector root mean square dis-
tance (URMS)[77] as a measure of structural similarity. Secondly,
if not enough clusters with sufficient size and density are ob-
tained, the fragment assembly search is reiterated, but with
additional spatial restraints obtained from the consensus sub-
structures in the models generated by the previous minimiza-
tion procedure. ABLE is not yet publicly available.
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Hybrid Methods Involving Fragment Assembly
and Lattice-Based Folding Simulations

An alternative approach to fragment assembly, and one with a
long history, is that of lattice representation, in which residues
are restricted to points in a regular three-dimensional lat-
tice.[78,79] These methods allow very fast sampling of the con-
formational space, but their ability to represent the atomic de-
tails and to use physics-based energy function is limited. Very
recently, following the success of ROSETTA and other fragment-
assembly methods, several hybrid methods combining the
strengths of both approaches have arisen.
TASSER, developed by Skolnick and co-workers,[80] starts with

FR analysis based on the PROSPECTOR threading method,[81] identi-
fying either a single consensus fold or a set of templates with
globally distinct folds. From the FR alignments, the protein
chain is divided into contiguous aligned regions of at least
5 aa (20.7 aa on average, according to the authors’ own bench-
mark), and gapped unaligned regions. The conformation of the
aligned regions is copied from the templates and remains un-
changed during the assembly, while the unaligned regions are
represented on an underlying cubic lattice as in the earlier
models developed by Skolnick, Kolinski, and co-workers.[82,83] A
series of initial models is generated and subjected for assembly
and refinement to the parallel hyperbolic Replica Exchange
Monte Carlo (REMC) sampling method. Structures generated in
the lowest-temperature replicas are subjected to iterative clus-
tering with SPICKER[84] to identify the final models based on the
cluster density. TASSER performed very well in the recent CASP-6
evaluation, comparably with ROSETTA and the FRANKENSTEIN’S MON-

STER/CABS hybrid method described below. TASSER is not yet
publicly available.
Another hybrid method, involving the recombination of

fragments and lattice-based modeling, was developed by the
author of this article in cooperation with Andrzej Kolinski, by
combination of the FRANKENSTEIN’S MONSTER method[34] (see also
above), for generation of initial models, with the reduced lat-
tice model CABS.[10] Briefly, preliminary hybrid models are gen-
erated with the template-based recombination method and
are scored with VERIFY3D to identify well-folded fragments, as
described earlier. These fragments are not used directly, but
are used as a source of spatial restraints to guide the REMC
folding simulation by the CABS model. The resulting decoys
are clustered by use of the HCPM method[85] to identify the
final models. This method performed very well in the recent
CASP-6 evaluation,[37] with the second-best average score
among all teams according to the unofficial evaluation avail-
able at http://bioinformatics.buffalo.edu/casp6/). The whole
method is not yet available as an integrated package, but the
individual components are available as the FRANKENSTEIN3D server
(see above) and the set of parameters of the CABS model
(http://www.biocomp.chem.uw.edu.pl/files/papers/CABS/cabs.
html).

Other Methods Based on Fragment Prediction

All the methods for protein-structure prediction by recombina-
tion described above use contiguous fragments of protein
backbone. Another, novel approach to protein-structure pre-
diction is based on the concept of three-dimensional structural
descriptors developed by Kryshtafovych and Fidelis (unpub-
lished analysis cited in ref. [86]): substructures that encompass,
for example, a set of noncontiguous protein backbone frag-
ments residing within a spatial neighborhood of a specific resi-
due. Calculation of descriptors for all known protein structures,
followed by clustering of similar descriptors into groups, re-
vealed certain sequence preferences that can be interpreted as
propensities of particular residues to be accommodated within
particular substructures,[86] similarly to the observation made
for single contiguous fragments in, for example, the I-SITES li-
brary.[87] From these correlations it is possible to identify de-
scriptors matching the target sequence and to predict a three-
dimensional fold most compatible with these descriptors, with-
out building an explicit three-dimensional model of the target
structure.[86] In principle, it may be possible to assemble the
tertiary structure of the target from descriptors containing
multiple backbone fragments but to the best of the author’s
knowledge no such method has yet been developed. The
structural descriptor approach may also be useful for protein-
structure prediction in combination with other methods that
allow reconstruction of complete atomic structures (as a
source of restraints for methods like CABS, for instance).

Why Are the Fragment Assembly Methods So
Successful?

Template-based methods, especially FR meta-servers, have
been found to produce exceptionally good predictions and are
now widely used for protein-structure prediction. In particular,
their relatively low computational cost makes them very useful
for large-scale analyses, such as for construction of models for
proteins encoded in whole genomes. However, all template-
based methods suffer from the fundamental limitation of
being able to recognize only folds that have already been ob-
served. The results of structural genomics initiatives reveal that
the majority of proteins belong to previously characterized
fold classes, but the percentage of structures with new folds or
variations of old folds that cannot be accurately predicted by
FR methods remains significant. On the other hand, physics-
based methods for ab initio folding are extremely costly in
terms of computing power even if they use reduced represen-
tation, and do not yet successfully fold large proteins. Howev-
er, even when a novel fold is discovered, it usually turns out to
be composed of common structural motifs, often at the level
of supersecondary or even larger structures. Levitt and co-
workers[58] has demonstrated that all proteins in the PDB can
be modeled accurately from rigid fragments of unrelated pro-
teins that are concatenated without any degrees of freedom.
Skolnick and co-workers[88,89] have shown that most of the pro-
teins in the PDB have significant structure alignments to other
proteins in different secondary structure and fold classes. Mod-

ChemBioChem 2006, 7, 19 – 27 A 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chembiochem.org 25

Protein-Structure Prediction by Recombination of Fragments

www.chembiochem.org


eling of new folds can therefore be greatly facilitated by as-
sembling them from fragments of known structures identified
by local fold recognition, rather than by attempting to model
the whole process of protein folding from first principles.
The success of methods based on fragment assembly lies

not only in the restriction of the conformational space, which
can be also achieved by other reduced models (e.g. pure lat-
tice models) that are less successful. As emphasized by Takada
and co-workers,[67] one of the problems of the contemporary
energy functions—those based on physics and statistics
alike—is the limited ability to capture the subtleties of interac-
tions between neighboring residues (side-chain/main-chain hy-
drogen bonding, side-chain configurational entropy loss etc.),
which govern the local torsional propensities. Ab initio compu-
tation of the local interaction energies may give rise to accu-
mulation of inaccuracies and greatly decrease the chances of
obtaining a globally correct model. Methods that utilize frag-
ments avoid this problem by sampling local conformations
that exist in native protein structures, which provides implicit,
yet accurate, representation of local interactions. A single frag-
ment substitution thus corresponds to instantly transporting
the modeled protein from one local energy minimum to an-
other, without the necessity of overcoming local energetic bar-
riers. This enormously speeds up the search for the global
energy minimum and allows the focus to be shifted to the
generation of non-local conformational changes and identifica-
tion of globally native-like structures.
The conservation of local structure may have not only physi-

cal, but also evolutionary, sense. Lupas, Ponting, and Russell[90]

proposed a scenario in which modern proteins have evolved
from ancient short-peptide ancestors, called antecedent do-
main segments (ADSs). They suggested that the ancestors of
contemporary (sub)domains arose by spontaneous noncova-
lent association of peptides with native-like and/or tertiary-like
structural features, and since such assemblies provided func-
tional advantage (e.g. , due to improved stability of the individ-
ual fragments or their increased efficient concentration), the
fusion of primitive genes encoding these fragments was pref-
erentially selected by evolution. It is noteworthy that attempts
to form folded and functional proteins by recombination have
revealed that successfully recombined fragments called “sche-
mas” often correspond to known supersecondary structural el-
ements.[91] This hypothetical mix-and-join scenario convincingly
explains the structures of repetitive proteins such as propellers,
TIM-barrels, helical bundles, etc. , but may also be invoked to
explain the origins of more complicated and asymmetrical do-
mains.[92]

Author’s Perspective

It is intriguing that those features of fragment assembly meth-
ods that make them so successful are in fact common to the
method of homology modeling. The process of fragment as-
signment may be seen not as mere identification of sequence–
structure compatibility, but as a true search for remote homol-
ogy to ancient short-peptide ancestors represented by families
of their descendants observed in a variety of different folds.

Thus, it is tantalizing to observe the competition (e.g. in CASP)
between the recently developed methods for fragment assem-
bly that use different libraries of fragments, as this may to
some extent resemble the evolutionary competition between
different peptides that might have existed in the primordial
preprotein world. The “winner” library would possibly corre-
spond to the set of short peptides that were also most suc-
cessful in the evolution. While the field of protein-structure
prediction clearly benefits from studies on protein evolution,
the field of evolutionary biology could also be inspired by a
particular model of protein folding by recombination of frag-
ments.
It is tempting to speculate that in the near future we will

see more integration of the most successful approaches—
meta-prediction and assembly of fragments, for example—and
further convergence of the evolutionary and physical schools.
The currently available hybrid methods generate low-resolu-
tion models that already seem to be sufficiently accurate and
confident to be widely used by biologists to make structural
and functional predictions. In the author’s opinion, in the near-
est future both the quality and the confidence of the theoreti-
cal models will improve significantly. It remains to be seen,
however, if the combination of meta-predicting with fragment
assembly will finally result in the solution of the protein folding
problem or if some radically new approach will be required.
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