
5/16/2010

1

Lecture 1

Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umeå Plant Science Center (UPSC)

Computational Life Science Centre (CLiC)

My research interests

Aug. 14, 2003Aug. 12, 2003

A systems biology approach to model the transcriptional network in trees

Aug. 16, 2003 Aug. 17, 2003

Course goals
At the end of this course you will know how to :
• write and debug basic Perl programs
• select the correct algorithm design for a given problem and do

time/space complexity analysis
• use online resources with Perl and use online Perl libraries and

i finterfaces
• use Perl to pipeline other programs (e.g. BLAST) and parse

output
• combined the above to solve practical Bioinformatics problems

Course information (I)

• Monday - Thursday:
– 9 – 12: lectures and lab summary
– 13 – 16: computer labs

• Friday
– 9 – 16: project in the computer lab

• Credit points: 2ECTS
• To pass:

– attend lectures and labs
– send lab and project documentation at the end of each day to:
jenny.onskog@plantphys.umu.se

Course information (II)

• Course webpage:
– http://www.trhvidsten.com/CPLA/

• Here you can find the
– course planp
– online resources

• and download
– lecture slides
– labs/project description
– additional material

Computer labs, MA336

5/16/2010

2

This lecture

• Introduction to programming:
– programming languages
– pseudo-code

• Introduction to Perl 1
b– basic expressions

– scalars
– arrays
– loops
– conditions
– file handling

Algorithm

• Algorithm: a sequence of instructions that one must
perform in order to solve a well-formulated problem

• Correct algorithm: translate every input instance into
the correct output
I l i h h i l i i• Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct
output

• Many successful algorithms in bioinformatics are
incorrect

Programs

• Algorithms are implemented in a programming
language to form programs

• Programs consists of:
– Variables: names with values (float, integer, string) or

arrays/tables/hashes of valuesarrays/tables/hashes of values
– Conditional statements: IF-THEN-ELSE
– Loops: while, for, until, etc.
– Modularity: procedures/functions/sub-

routines/objects/methods
• Pseudo-code: programming language-independent,

often used to sketch a program using pen and paper

Pseudo‐code

Sorting problem: Sort a list of n integers:
a = (a1, a2, …, an) e.g. a =(7,92,87,1,4,3,2,6)

SelectionSort(a,n)()
1 for i ← 1 to n-1
2 j ← Index of the smallest element

among ai, ai+1, …, an
3 Swap elements ai and aj
4 return a

Example run

i = 1: (7,92,87,1,4,3,2,6)
i = 2: (1,92,87,7,4,3,2,6)
i = 3: (1,2,87,7,4,3,92,6)
i = 4: (1 2 3 7 4 87 92 6)i = 4: (1,2,3,7,4,87,92,6)
i = 5: (1,2,3,4,7,87,92,6)
i = 6: (1,2,3,4,6,87,92,7)
i = 7: (1,2,3,4,6,7,92,87)

(1,2,3,4,6,7,87,92)

5/16/2010

3

Syntax versus semantics

• Syntax: the rules for constructing valid statements in a
programming language

• Semantics: the meaning of a program

• A ifi l ith i l t d i diff t i• A specific algorithm implemented in different programming
languages would use different syntax, but have the same
semantics

• Syntax is easy and can be checked before execution (the
interpreter will tell you when you make syntax mistakes)

• Semantics is hard and ”bugs” typically only reveal
themselves at execution time

Programming languages

• Imperative programming: describes computation as
statements that change a program state (e.g. Perl,
Fortran, C, and Java)

• Functional programming: treats computation as the
evaluation of (mathematical) functions and oftenevaluation of (mathematical) functions, and often
avoids state (e.g. LISP)

• Declarative programming: while imperative programs
explicitly specify an algorithm to achieve a goal,
declarative programs explicitly specify the goal and
leave the implementation of the algorithm to the
support software (e.g. PROLOG)

Sorting: imperative/procedural

Sorting problem: Sort a list of n integers:
a = (a1, a2, …, an)

SelectionSort(a,n)()
1 for i ← 1 to n-1
2 j ← Index of the smallest element

among ai, ai+1, …, an
3 Swap elements ai and aj
4 return a

Pseudo-code hides ugly details such as

“Swap elements ai and aj”

1 tmp ← aj

2 aj ← ai

3 ai← tmp

or

“j ← Index of the smallest element among ai, ai+1, …, an”

IndexOfMin(array,first,last)
1 index ← first
2 for k ← first + 1 to last
3 if arrayk < arrayindex
4 i d k4 index ← k
5 return index

Remember, though, that the devil is in the details!

Recursion

RecursiveSelectionSort(a,first,last)
1 if (first < last)
2 index ← Index of the smallest element

among a a aamong afirst, afirst+1, …, alast

3 Swap elements afirst and aindex

4 a ← RecursiveSelectionSort(a,first+1,last)
5 return a

5/16/2010

4

Example I

Write pseudo-code for a program that solves a quadratic
equation ax2 + bx + c = 0:

QuadraticEquationSolver (a, b, c)

Remember that:
a

acbbx
2

42 −±−
=

QuadraticEquationSolver(a, b, c)
1 root ← b2-4ac;
2 if root < 0
3 return “No solution”

4 x1 ←

5 2
2a

rootb- +

rootb- −5 x2 ←

6 if x1 = x2
7 output ”Solution: x = x1”
8 else
9 output ”Solutions: x = x1 or x = x2”

2a
rootb

Example II

Write pseudo-code for a program that removed duplicates
in an array a = (a1, a2, …, an)

RemoveDuplicates (a)

E.g. a = (1, 2, 2, 4, 4) outputs (1, 2, 4)

RemoveDuplicates(list, n)
1 newlist ← ()
2 for i ← 1 to n
3 m ←length of newlist
4 foundDuplicate ← false
5 for j ← 1 to m
6 if list = newlist6 if listi = newlistj
7 foundDuplicate = true
8 break
9 if foundDuplicate = false
10 add listi to newlist
11return newlist

Example III

Write pseudo-code for a program that counts from 0 to n
= (n1, n2, ..., nk):

Count (n)

E.g. n = (1, 2) outputs:

00
01
02
10
11
12

Count(n, m)
1 c ←(0, 0, …, 0)
2 while forever
3 for i ←m to 1
4 if ci = ni
5 ci ←0
6 else6 else
7 ci ← ci + 1
8 break
9 output c
10 if c = (0, 0, …, 0)
11 break

5/16/2010

5

What is Perl ?

• Perl was created by Larry Wall

• Perl = Practical Extraction and Report Language

• Perl is an Open Source project

P l i l tf i l• Perl is a cross-platform programming language

Why Perl

• Perl is a very popular programming language
• Perl allows a rapid development cycle
• Perl has strong text manipulation capabilities
• Perl can easily call other programs• Perl can easily call other programs

• Existing Perl modules exists for nearly everything
– http://www.bioperl.org
– http://www.cpan.org/ (Comprehensive Perl Archive

Network)

ActivePerl Open Perl IDE

Our first Perl program

use strict;
use warnings;

print "Hello world!\n";

“use strict" makes it harder
to write bad software

”use warnings” makes Perl
l i h i

p

Hello world!

complain at a huge variety
of things that are almost
always sources of bugs in
your programs

”\n” prints a new line

Perl scalars
• Perl variables that hold single values are called Scalars.
• Scalars hold values of many different types such as strings, characters, floats,

integers, and references
• Scalars are written with a leading $, like: $sum
• Scalars, as all variables, are declared with my, like my $sum
• Perl is not a typed language: scalars can be strings, numbers, etc.

• You can reassign values of different types to a scalar:• You can reassign values of different types to a scalar:
my $b = 42; $b = "forty-two"; print “$b\n”;
forty-two

• Perl will convert between strings and numbers for you:
my $a = "42" + 8; print “$a\n”;
50
my $a = "Perl" + 8; print "$a\n";
Argument "Perl" isn't numeric in addition (+) at test.pl line 4.
8

5/16/2010

6

Perl scalars: some numerical operators

• $i++; # $i = $i + 1;
• $i--; # $i = $i - 1;
• $i+= 5; # $i = $i + 5;
• $i/=5; # $i = $i / 5;• $i/=5; # $i = $i / 5;
• $i**3; # $i * $i * $i;
• $i = sqrt($i)

days

Mon Tue Wed Thu

$today

Mon

The three fundamental datatypes in Perl

Scalar Array Hash

• The sigills $,@,% must always be used.
• You can use different datatypes with the same name in the same program.

Perl Arrays
• Arrays hold multiple ordered values.

• Arrays are written with a leading @, like: @shopping_list
• Arrays can be initialized by lists.

my @s = ("milk","eggs","butter"); print "@s\n";
milk eggs butter

• Arrays are indexed by integer. The first scalar in an array has
index 0 and no matter its size, the last scalar has index -1:
my @s = ("milk","eggs","butter"); print “$s[0] - $s[-1]\n";
milk - butter

• The sizes of arrays are not declared; they grow and shrink as
necessary.
my @s = ("milk","eggs","butter"); $s[4] = "beer"; print "@s\n";
Use of uninitialized value in join or string at test.pl line 4.
milk eggs butter beer

Perl Arrays
• Arrays can be iterated over in foreach loops. You don't need to

know their size:
my @s = ("milk","eggs","butter");
foreach (@s) {

print "$_\n";
}
milk
eggs
butter

$_ is known as the "default input and
pattern matching variable".

This is all equivalent:

my @s = ("milk","eggs","butter");
foreach (@s) {

i

my @s = ("milk","eggs","butter");
foreach my $item (@s) {

i "$i \ "print;
print "\n";

}

my @s = ("milk","eggs","butter");
foreach (@s) {

print "$_\n";
}

print "$item\n";
}

Perl Arrays
An array in scalar context evaluates to its size. You can easily get the
index of the last item in an array.

my @s = ("milk","eggs","butter");
my $length = @s;
print "$length\n";
3

my @s = ("milk","eggs","butter");
my $last_index = $#s;
print "$last_index\n";
2

my @s = ("milk","eggs","butter");
print "$s[$#s]\n";
butter

5/16/2010

7

Perl Arrays
Special commands add or remove items to the front or back of arrays.
push and pop add to the back, making a stack.

my @s = ("milk","eggs","butter");
push @s, "beer";
print "@s\n";
milk eggs butter beer

my @s = ("milk","eggs","butter");
pop @s;
print "@s\n";
milk eggs

my @s = ("milk","eggs","butter");
my $last_item = pop @s;
print "$last_item\n";
butter

Perl arrays
grow or shrink as needed

"fred" "wilma"

@data

my @data = ("fred","wilma");

Perl arrays
grow or shrink as needed

"fred" "wilma" 42

@data

my @data = ("fred","wilma");

push @data, 42;

Perl arrays
grow or shrink as needed

"fred" "wilma" 42 undef undef "dino"

@data

my @data = ("fred","wilma");

push @data, 42;

$data[5] = "dino";

• The value of all uninitialized scalars (and scalar elements of arrays and hashes)
has the special scalar value undef.

• undef evaluates as 0 when used as a number and "" when used as a string, which
is why you most often don't have to initialize variables explicitly before you use
them.
my $a; $a++; print "$a\n";
1

undef

my @a = (1,2);
$a[3] = 23; print "@a\n";
Use of uninitialized value in join or string at test.pl line 4.
1 2 23

• Even after a scalar has been assigned, you can undefine them using the undef
operator.

$a = undef;
undef @a;

Array indexing

"fred" "wilma" 42 undef undef "dino"

@data
$data[0] $data[5]$data[0] $data[5]

$data[$#data]

$data[‐1]

5/16/2010

8

Arrays and lists in assignments

"fred" "wilma" 42 undef undef "dino"

@data

You can initialize or set arrays or lists by arrays or lists:
my ($man,$wmn) = ($data[0],$data[1]); print "$man $wmn\n";
fred wilma
my ($man,$wmn) = @data; print "$man $wmn\n";
fred wilma
@data = ("barney", "bambam"); print "@data\n";
barney bambam
my @mydata = @data; print "@data | @mydata\n";
barney bambam | barney bambam

You can swap elements without a temporary:
($data[1],$data[0]) = ($data[0],$data[1]); print "$data[0] $data[1]\n";
bambam barney

Array slices

"fred" "wilma" 42 undef undef "dino"

@data

You can select multiple elements from an array at once.
my ($man,$wmn) = @data[0..1]; print "$man $wmn\n";
fred wilma
@data[2,3] = ("barney","bambam"); print "@data\n";
fred wilma 42 barney bambam dino
my @mydata = @data[0..2,5]; print "@mydata\n";
fred wilma barney dino
@data[0,1] = @data[1,0]; print "@data\n";
wilma fred 42 barney bambam dino

Adding elements to array ends

• • •

shift @a pop @a$a[‐1]$a[0]

unshift @a, $b push @a, $b

unshift @a, @b push @a, @b

Loops: Iterating over Arrays
for ($i = 0; $i < @data ; $i++) { # c-style

print "$data[$i]\n";

}

for (0..$#data) { # perl-style, default scalar is index

print "$data[$_]\n"; # use when you need the indices explicitly

print "The $_","th element is $data[$_]\n"; # like here

}

foreach (@data) { # perl-stylier, default scalar is element...

print "$_\n";

}

while (@data) { # evaluates false when scalar(@data) == 0

print shift @data, "\n"; # side-effect: removes 0th element

}

• if – else statements are used to test whether an expression is true or false
if ($a < 0) {

print "$a is a negative number\n";
} elsif ($a == 0) {

print "$a is zero\n";
} else {

conditions

print "$a is a positive number\n";
}

• Use the function defined to test if a scalar has the value undef
if (defined $a) {

$a++;
}
equivalent to
$a++ if defined $a;

The rules of truth in Perl

• Only Scalars can be True or False
• undef is False
• "" is False
• 0 is False
• 0.0 is False
• "0" is False
• Everything else is True (including "0.0" !)

5/16/2010

9

Logical expression

• $a == $b # compare numbers, true if $a equal to $b
• $a != $b # compare numbers, true if $a is not equal to $b
• $a eq $b # compare strings, true if $a is equal to $b
• $a ne $b # compare strings, true if $a is not equal to $b
• !$a # boolean true if $a is 0 false if $a is 1• !$a # boolean, true if $a is 0, false if $a is 1

Controlling loops: next and last

next skip to the next iteration

my @a = (1,2,5,6,7,0);

my @filtered;

last ends the loop

my @a = (1,2,5,6,7,0);

my $found_zero = 0;
foreach (@a) {

next if $_ < 5;
push @filtered, $_;

}
print "@filtered\n";
5 6 7

foreach (@a) {
if ($_ == 0) {

$found_zero = 1;
last;

}
}
print "$found_zero \n";
1

Sorting arrays

• Use the built in function sort

• The results may surprise you!
my @words = ("c","b","a","B");
@words = sort @words;
print "@words\n";
B a b c

my @numbers = (10,3,1,2,100);
@numbers = sort @numbers;
print "@numbers\n";
1 10 100 2 3

• sort uses a default sorting operator cmp that sorts "ASCIIbetically", with capital
letters ranking over lower-case letters, and then numbers.
sort @words;
is equivalent to:
sort {$a cmp $b} @words;

• cmp is a function that returns three values:

sort

– -1 if $a le $b
– 0 if $a eq $b
– +1 if $a ge $b

• where le, eq, and ge are string comparison operators.
• $a and $b are special scalars that only have meaning inside the subroutine block

argument of sort. They are aliases to the members of the list being sorted.

sort {$a <=> $b} @numbers

• <=> (the "spaceship operator") is the numerical equivalent to the cmp operator:
– -1 if $a < $b
– 0 if $a == $b
– +1 if $a > $b

• You can provide your own named or anonymous comparison subroutine to sort:• You can provide your own named or anonymous comparison subroutine to sort:
my @numbers = (10,3,1,2,100);
@numbers = sort {$a <=> $b} @numbers;
print "@numbers\n";
1 2 3 10 100
@numbers = sort {$b <=> $a} @numbers;
print "@numbers\n";
100 10 3 2 1

Syntax summary: scalars

• Declare: my $age;
• Set: $age = 29; $age = “twenty-nine”;
• Access: print “$age\n”; twenty-nine

5/16/2010

10

Syntax summary: arrays

• Declare: my @children;
• Set all: @children = (“Troy”,”Anea”);
• Set element: $children[0] = “Troy Alexander”;
• Access all: print “@children\n”; Troy Alexander Anea• Access all: print @children\n ; Troy Alexander Anea
• Access element: print “$children[1]\n”; Anea

Syntax summary: loops

foreach my $child (@children) {
print “$child\n”;

}
Troy Alexander
AneaAnea

for (my $i = 0; $i < @children; $i++) {
print “$i: $children[$i]\n”;

}
0: Troy Alexander
1: Anea

Syntax summary: conditions

foreach my $child (@children) {
if (length($child) > 4) {

print “$child\n”;
}}

}
Troy Alexander

Reading and writing to files

• open(A, ">sequence.txt") – creates a new file and opens it for
writing

• open(A, ">>sequence.txt") – opens an existing file for writing
• open(A, "sequence.txt") – opens an allready existing file for

readingg

open(A , ">sequence.txt");
print A “AGCTTTA\n";
close(A);

Reading and writing to files

open(A , ">>sequence.txt");
print A "AGCTTTA\n";
close(A);

open(A , "sequence.txt");
my $line1 = readline *A;
my $line2 = readline *A;
close(A);
print "$line1 | $line2\n";
AGCTTTA
| AGCTTTA

Reading files

my @seqs;
open(A , "sequence.txt");
while (<A>) {

chomp;

chomp removes ”\n” from
the end of the line if it
exists

push @seqs, $_;
}
close(A);
print ”@seqs\n";
AGCTTTA AGCTTTA

5/16/2010

11

Splitting strings: split
• You can split a string on any substrings that match a regular-

expression with:
– @array = split /PATTERN/, $string;
– split /\s/, "do the twist"; # gives ("do","the","twist")
– split //, "dice me"; # gives ("d","i","c","e"," ","m","e");

• Extremly useful when parsing files:
my @genes;g
open(A , "sequences.txt");
while (<A>) {

chomp;
my ($gene) = split /\s/;
push @genes, $gene;

}
close(A);
print ”@genes\n";
AFG DST WRT

Extracting fragments: substr

my $string = "AC Milan";
my $fragment = substr $string, 3;
print "$fragment\n";
Milan

my $string = "F.C. Internazionale";
my $fragment = substr $string, 5, 5;
print "$fragment\n";
Inter

my $string = "F.C. Internazionale";
my $fragment = substr $string, -7, 4;
print "$fragment\n";
zion

@ARGV: command‐line arguments Acknowledgements

• Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

