Lecture 1

Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umea Plant Science Center (UPSC)
Computational Life Science Centre (CLiC)

A systems biology approach to
Aug. 12, 2003

4 e Y oa

PVt g e

CoLlo

odel the transcriptional network in trees

@
=)
~t
g
R

Aug, 14, 2

A /
= - x—®
‘. A
et .
- - -
e ® -
n®
A . -
‘A . _—/ i e
- «
=¥ Al ..
- b - A
®
g s e
‘.
L B . -
g
“; .“
Aug. 16, 2003
.
. pas AP
- . | _— o
e [a
2k ¢
A .
». ® »
- Y .
S WA = -
&
PE S 7 o
o - . A
L]
A ¢ e
i
e o K -
. 1
N\ e
o o

L A
-4 4 A
&
»— s h—
£ Y
A“' [
- -
1 - ¢ - s
' -
a A .]
ry K 4 N .-
. o : !
"o g Al -..
i - 4 “ N
\ .
i -
P / @A\
N 5 os |
- = - A -
: & &
..; “.'
Aug. 17,2003
.
R A o
= S N s
¥ ! i
A“ ®
o @ .
‘., ® » ‘
.t
A A . J L
/ .
. . i' E A
P = 7 o
= + % % oy
{ P
A .
®
o8 $ [tee
A o K --
ik v/
vl e

003

‘&
|\

ourse goa
At the end of this course you will know how to :
* write and debug basic Perl programs

* select the correct algorithm design for a given problem and do
time/space complexity analysis

* yuse online resources with Perl and use online Perl libraries and
interfaces

* use Perl to pipeline other programs (e.g. BLAST) and parse

O11tN11t

A LS &

* combined the above to solve practical Bioinformatics problems

rm

P f‘f\: ' o
|\ ST 1111V

11
|

~
U

i M Vel a II
] \|

4 \
111Ad LIV] ’

Monday - Thursday:

— 9 —12: lectures and lab summary
— 13 — 16: computer labs

Friday
— 9 —16: project in the computer lab

Credit points: 2ECTS
To pass:

— attend lectures and labs

— send lab and project documentation at the end of each day to:
jenny.onskog@plantphys.umu. se

rm

P f‘f\: 7\
|\ ST 1111V

~L1V rivmr il (11D
UUul I 1 |C|L|U||\||I
Course webpage:

— http://www.trhvidsten.com/CPLA/
Here you can find the

— course plan

— online resources
and download
— lecture slides

— labs/project description

— additional material

Computer labs, MA336

o Computer Programming Languages and A h‘ﬁ!ﬂ

File Edit View Bookmarks Widgets Tools Help

@« | =5 ; 3 ? file://localhost/Ci/Users/Torgeir/WORK/ Webpage/trhvidsten.com/CPLA/index.html

Time: 24-28. May, 2010
Lecturer: Torgeir R. Hvidsten
Labs: Jenny Onskog

At the end of this course you will know how to -

- write and debug basic Perl programs

- select the correct algorithm design for a given problem and do time/space complexity analysis
- use online resources with Perl and use online Perl libraries and interfaces

- use Perl to pipeline other programs (e.g. BLAST) and parse output

- combined the above to solve practical Bioinformatics problems

Resources:

- www_perl.org

- www._cpan.org/

- BioPerl

- AtivePerl

- Open Perl IDE

- Beginner's Introduction to Perl

Time and place Topics

MONDAY Ui 1l

Introduction to programming: pseudo-code,

2010.05.24 KBF30, KBC examples of languages
13-16 = Introduction to Perl 1: basic expressions,
MA336, MIT scalars, arrays, loops, conditions, file handling
TUESDAY 9-12 » Introduction to Perl 2: hashes, data structures,
2010.05.25 KBF30, KBC references, subroutines, modules
13-186
MA336, MIT
WEDNESDAY g9-12 » Introduction to Perl 3: regular expressions,
2010.05.26 KBF30, KBC parallelization and running external programs
13-16 and commands
MA336, MIT s Object-oriented programming
= BioPerl
THUESDAY 9-1z2 = Basic algorithm design: exhaustive search,
2010.05.27 KBF30, KBC greedy algorithms, dynamic programming and
13-16 randomized algorithms
MA336, MIT = Correct versus incorrect algorithms
s Time/space complexity analysis
FRIDAY 9-16 = Perform one of the projects or bring your own
2010.05.28 MA336, MIT project

Work individually or in pairs

Course evaluation 2009

e ———

I Computer Programming Languages and Algorithms in Bioinformatics 2010

Material

Lecture 1
(six slides on each page)
Lab 1
(Suggestad solutions)
Lecture 2
(six slides on each page)
Lab 2
(Suggestad solutions)
Lecture 3
(six slides on each page)

Lab 3
(Suggested solutions)

Lecture 4
(six slides on each page)

Lab 4
(Suggested solutions)

Praojects

Thic |
I]

+11
111 LUl

eciure
* Introduction to programming:

— programming languages

— pseudo-code
* Introduction to Perl 1

— basic expressions

— scalars

— arrays

— loops

— conditions

— file handling

AlraAavitlhma
HlSUl ILITTT]

Algorithm: a sequence of instructions that one must
perform in order to solve a well-formulated problem

Correct algorithm: translate every input instance into
the correct output

Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct
output

Many successtul algorithms in bioinformatics are
incorrect

')

D
Pl

Ogram

Algorithms are implemented in a programming
language to torm programs
Programs consists of:

— Variables: names with values (float, integer, string) or
arrays/tables/hashes of values

— Condmonal statements: [IF-THEN-ELSE

— Modularity: procedures/functions/sub-
routines/objects/methods

Pseudo-code: programming language-independent,
often used to sketch a program using pen and paper

n(‘f\l lflf\ f‘f\Af\
roctuuu~-Louuc

Sorting problem: Sort a list of 7 integers:
a=(a,a,,...,a)eg a=(7923871,4,3,2,0)

SelectionSort(a,n)

1 fori«—17ton-1

2 7« Index of the smallest element
aMmong a, d; 4, ..., d,

3 Swap elements ¢, and 4,

4 return a

N, N,
T

. N,
I

N, N,
I

N,
I

|

C
LA

Xan |p run

(7,92,87,1,4,3,2,6)
(1,92,87,7,4,3,2,6)
(1.2,87,7,4,3,92,6)
(1.2.5,7,4,87,92,6)
(,1,87,92,0)
(,87,92,7)
(,92,87)
()

CvinFAav viavciie carmanti~e
JYl Ld \"Aw | SO OCTIIIAIILILDS

c
S

Syntax: the rules for constructing valid statements 1n a
programming language

Semantics: the meaning of a program

A specific algorithm implemented in different programming
languages would use different syntax, but have the same
semantics

Syntax is easy and can be checked before execution (the
interpreter will tell you when you make syntax mistakes)

Semantics is hard and ”bugs” typically only reveal
themselves at execution time

D
Pl

N EaVYevaYe

Ogramn ||i"|g Iai"lguagca

* Imperative programming: describes computation as
statements that change a program state (e.g. Perl,
Fortran, C, and Java)

* Functional programming: treats computation as the
evaluation of (mathematical) functions, and often
avoids state (e.g. LISP)

¢ UCleIdllVC pr()grdl g W[lllC lIIlpCIdLlVC PIUg “a1mnSs
explicitly specity an algonthm to achieve a goal,
declarative programs explicitly specify the goal and

leave the implementation ot the algorithm to the
support software (e.g. PROLOG)

CA MY ITIMANA ‘I'\l
Sorting: imperati

ve/pro

Sorting problem: Sort a list of 7 integers:

a=(a,ay,...a)

SelectionSort(a,n)

1 for:<7ton1

2 7« Index of the smallest element
among a, d., ;, ..., d,
3 Swap elements ¢, and 4,

4 return a

C)_

-3

Pseudo-code hides ugly details such as

“Swap elements a; and dj-”

! mp «— a,

J
2 a; < a,
3 a< tmp

or

35
n

7 <— Index of the smallest element among a, a,, 4, ..., a

IndexOfMin(atray,first,Jas?)
1 index < first

2 for k<« first + 1 to last
3 if array, < array, .

4 index <— k

5 return ndex

Remember, though, that the devil is in the details!

LIvrclA N
191VU11

Df\f‘
IN\NCL

RecursiveSelectionSort(a,first, las?)

1
2

if (forst < las?)

mdex «<— Index of the smallest element

among dﬁm" dﬁm‘+7> A d/cm‘

Swap elements 4, and a,,,,,

a «<— RecurstveSelectionSort(a,first+1,las?)

return a

I

Fvammnl!
CXdMmMpie

Write pseudo-code for a program that solves a quadratic
equation ax® + bx + ¢ = 0:

QuadraticEquationSolver (4, b, ¢)

—b++/b? —4ac
2a

Remember that: X =

QuadraticEquationSolver(a, 4, ¢)

1
2
3

root <— b?-4ac;
if root < 0
return “No solution”

-b++/root

2a

-b —A/root

2a

x]1 «

X2 «—

if x1 =x2
output ’Solution: x = x1”
else

output “Solutions: x = x1 or x = x2”

l:l
LA

||p

Write pseudo-code for a program that removed duplicates
in an array a2 = (a;,a,, ...,)

RemoveDuplicates (a)

E.g a=(1,2,24,4) outputs (1, 2, 4)

RemoveDuplicates(list, 7)

1 newlist < ()

2 for /< 1ton

3 m «<—length of newlist
SJoundDuplicate <— false

for j«— 7 tom

SfoundDuplicate = true
break
if foundDuplicate = false
10 add /s, to newlist

11 return newlist

4
5
§ it /ist; = newlist,
7
8
9

§

[T
s_13
O

M

Write pseudo-code for a program that counts from 0 to n

= (1, Mpy oy 11):

Count (n)
00
01
E.g n= (1, 2) outputs: 02
10
11

12

Count(n, m)
1 ¢c<(0,0,...,0
2 while forever
3 fori«—mto 1
if ¢, = #,
¢, <0
else
(¢ + 1
break
output c
10 ifc=(0,0,...,0
11 break

O o0 1 & Ul B~

What is Perl| ?

 Perl was created by Larry Wall

= Practical =xtraction and ~eport |_anguage
 Perl is an Open Source project

 Perl is a cross-platform programming language

\A/hyv/ D
>

|
VVIly 11

S
Perl 1s a very popular programming language
Perl allows a rapid development cycle

Perl has strong text manipulation capabilities

Petl can easily call other programs

Existing Perl modules exists for nearly everything

— http://wwwbioperl.org

— http://www.cpan.org/ (Comprehensive Perl Archive
Network)

Tt
<
™D
B,
M

& Perl Package

Manager

Bo =5

Eile Edit View Action Help

g bioperl

E:';-] Package Name | Area | Installed | Available

Abstract

@ Bio-mGen

|l
Status | Details

(%) Bundle-BioPerl-Run 1,5.2_100
() Bundle-BioPerl-N... 1,5.2_100
(% Bundle-BioPerl-0b 1,5.2_100
() Bundle-BioPerl-Core 1,5.2_100
@ Bundle-BioPer|-Core 1.59_4
[Bundle-BioPer] 2,18

@ bioperl-run 1.5.2_100
@ bioperl-network 1,5.2_100
() bioperl-db 1,5.2_100
(3 bioperl 1,5.2_100

ste 159 4

1.03

Bundle of pre-requisites for bioperl-run

Bundle of pre-requisites for bioperl-network
Bundle of pre-requisites for bioper|-db

Bundle of pre-requisites for bioperl

Bundle of pre-requisites for BioPerl

A bundle to install external CPAN modules used by BioPerl 1.5.2
bioperl-run - wrapper toolkit

bioperl-network - package for biological networks
bioperl-db - package for biological databases
Bioinformatics Toalkit

Bicinformatics Toalkit

a fast and simple gene loading, helping automate BioPerl processes.

BioPerl

Bioinformatics Toolkit

Version:
Released:
Author:
CPAN:

159 4
2009-1-21

BioPerl Team <bioperld@bioperl.org=

http: {fsearch.cpan.orgfdistBioPerl-1.5.9 4/

10781 packages, 11 listed | 88 installed, 0 toinstall, 0 toremove | Install Area: site

Open Perl IDE

=| Open Perl IDE <testpl> - [C:\Users\Targeir WORK\Activities\Teaching\LanguagesAlgorithms\Labs\test.pl] |E|E|éj
[E] File Edit Search Project Run Window Help
Oz 5= & [2B O
Desktap: v | | perfdb.pl test.pl]
Yarables]Breakpoints] Modules] z
Mame S| Type | W 3
4
& . —3eqg =» '
&
T|# print out some detasils about it
8 print "seg is ", £seg->length, " bases
9 print "r L seq iz ", fseg->revcom->sed, |

11 5eqlC-rnew
13 $out->write_seg($seq):

-format => 'Fasta');

2 Cansale] Emar Elutuut] EaI\Stack]

5tart parameter. |

O
=
~t
'lD

use strict;

use warnings;

print "Hello world\n";

Hello world!

p Ogram

“ase strict" makes it harder
to write bad software

use warnings” makes Perl
complain at a huge variety

of things that are almost

bugs in

alwavs sources of
your programs

”\n” prints a new line

Perl scalars

Perl variables that hold single values are called Scalars.

Scalars hold values of many different types such as strings, characters, floats,
integers, and references

Scalars are written with a leading $, like: $sum

Scalars, as all variables, are declared with my, like my $sum
Petl is not a typed language: scalars can be strings, numbers, etc.

You can reassign values of different types to a scalar:

my $b = 42; §b = "forty-two"; print “$b\n”’;

forty-two

Perl will convert between strings and numbers for you:

my $a = "42" + 8; print “$a\n”;

50

my $a = "Perl" + §; print "$a\n";

Argument "Perl" isn't numeric in addition (+) at test.pl line 4.

8

S. sO0me

$1++; H % =%+ 1;

$1--; H %5 =%1-1;
$i+=5;, HB =% +5;
§i/=5, HF=8$i/5;
$11*3; H B * $1* §i;

$i = sqrt($i)

The three fundamental datatypes in Per]

Yelongday
@days ;"; Thursday
$today :
Friday
Mon Mon Tue Wed Thu i
Monday
Sunday
Wednesday
Tuesday |
Scalar Array Hash

e The si2/ls $,@,% must always be used.

* You can use different datatypes with the same name in the same program.

Perl Arrays

Arrays hold multiple ordered values.

Arrays are written with a leading (@), like: (@shopping_list
Arrays can be initialized by lists.

my @s = ("milk","eggs","butter"); print "@s\n";

milk eggs butter

Arrays are indexed by integer. The first scalar in an array has
index 0 and no matter its size, the last scalar has index -1:

my @s = ("milk","eggs","butter"); print “$s[0] - $s[-1]\n";
milk - butter

The sizes of arrays are not declared; they grow and shrink as
necessary.

my @s = ("milk","eggs","butter"); $s[4] = "beer"; print "@s\n";
Use of uninitialized value in join or string at test.pl line 4.

milk eggs butter beer

Perl Arrays

e Arrays can be iterated over in foreach loops. You don't need to
know their size:

my @s = ("milk","eggs" "butter");
foreach (@s) {
print "$_\n";
b
milk
eggs
butter

S_is known as the "default input and
nattern matching variable".

This is all equivalent:

my @s = ("milk","eggs" "butter"); my @s = ("milk","eggs" "butter");
foreach (@s) { foreach my $item (@s) {

print; print "$item\n";

print "\n"; }
}

my @s = ("milk","eggs" "butter");
foreach (@s) {
print "$_\n";

b

Perl Arrays

An array in scalar context evaluates to its size. You can easily get the
index of the last item 1n an array.

my @s = ("milk","eggs" "butter");
my $length = @s;

print "$length\n";

3

my @s = ("milk","eggs" "butter");
my $last_index = $#s;

print "$last_index\n";

2

my @s = ("milk","eggs" "butter");
print "$s[$#s]\n";
butter

Perl Arrays

Special commands add or remove items to the front or back of arrays.
push and pop add to the back, making a stack.

my @s = ("milk","eggs" "butter");
push @s, "beet";

print "@s\n";

milk eggs butter beer

my @s = ("milk","eggs" "butter");
pop @s;

print "@s\n";

milk eggs

my @s = ("milk","eggs" "butter");
my $last_item = pop @s;
print "$last_item\n";

butter

Perl arrays
grow or shrink as needed

"fred" | "wilma"

@data

my (@data = ("fred","wilma");

Perl arrays
grow or shrink as needed

"fred" | "wilma" 42

@data

my (@data = ("fred","wilma");
push (@data, 42;

Perl arrays

grow or shrink as needed

"fred"

"wilma"

42

undef

undef

"dino"

@data

my (@data = ("fred","wilma");

push (@data, 42;

$data[5] = "dino";

undef

* The value of all uninitialized scalars (and scalar elements of arrays and hashes)
has the special scalar value undef.

e undef evaluates as 0 when used as a number and "" when used as a string, which
is why you most often don't have to initialize variables explicitly before you use
them.

my $a; $a++; print "$a\n";

1

my @a = (1,2);

$a[3] = 23; print "@a\n";

Use of uninitialized value in join or string at test.pl line 4.
12 23

* Even after a scalar has been assigned, you can undefine them using the undef
operatot.

$a = undef;
undef @a;

AIFIF"\\I IV\AA\IIV\R
AlTdy HNUCAITNg
"fred" | "wilma" 42 undef | undef | "dino"
t @data t
Sdata[0] Sdata[5]

Sdata[S#data]

Sdatal[-1]

"fred" | "wilma" 42 undef | undef | "dino"

@data

You can initialize or set arrays or lists by arrays or lists:

my ($man,$wmn) = ($data[0],$data[1]); print "$man $wmn\n";
fred wilma

my ($man,$wmn) = @data; print "$man Fwmn\n";

fred wilma

@data = ("barney", "bambam"); print "@data\n";

barney bambam

my (@mydata = @data; print "@data | @mydata\n";

barney bambam | barney bambam

You can swap elements without a temporary:
($data[1],$data]0]) = ($data[0],$data[1]); print "$data[0] $data[1]\n";

bambam barney

"fred" | "wilma" 42 undef | undef | "dino"

You can select multiple elements from an array at once.

my ($man,$wmn) = @data|0..1]; print "$man $wmn\n";
tred wilma

@data|2,3] = ("barney","bambam"); print "@data\n";
fred wilma 42 barney bambam dino

my @mydata = @data|0..2,5]; print "@mydata\n";

fred wilma barney dino

(@data|0,1] = @data[1,0]; print "@data\n";

wilma fred 42 barney bambam dino

shift @a) pop @a

- —h
/~ ™

unshift @a, $b push @a, $b
unshift @a, @b push @a, @b

Loops: Iterating over Arrays

for ($1 = 0; §i < @data; $i++) { # c-style
print "$data[$i]\n";

for (0..$#data) { # perl-style, default scalar is index
print "$data[$_|\n"; # use when you need the indices explicitly

print "The $_","th element is $data[$_]\n"; # like here

while (@data) { # evaluates false when scalar(@data) == 0

print shift @data, "\n"; # side-effect: removes Oth element

conditions

* if — else statements are used to test whether an expression is true or false
if ($a <0) {
print "$a is a negative number\n";
}oelsif ($a==0) {
print "$a is zero\n";
} else {

print "$a is a positive number\n";
e Use the function defined to test if a scalar has the value undef
if (defined $a) {
$at++;

b

equivalent to
$a++ if defined $a;

ThAa ri
[|

~F +rii+thh 11 D
11C Ul Ul r

4 ' |
Ll 1l 11

If\f‘ 7~
1o C

Only Scalars can be True or False
undef is False

""" is False

0 1s False
0.0 1s False

"0" 1s False
Everything else is True (including "0.0" I)

$a == §b
$a = $b
aeqb
$a ne §b

oH
o

I

5

ogic Xpre
compare numbers, true if $a equal to $b

compare numbers, true if $a is not equal to $b
compare strings, true if $a 1s equal to §b

compare strings, true if $a 1s not equal to $b

boolean, true if $a is 0, false if $ais 1

CAantrall
\ & Ull

Oont

next skip to the next iteration
my @a = (1,2,5,6,7,0);

my @filtered;
foreach (@a) {

nextif § < 5;

push @filtered, $_;

h
print "@filtered\n";

567

'CS

!_l)
o
wn
—t

last ends the loop
my @a — (1)2>5>6>7>O>;

my $found_zero = 0;
foreach (@a) {
if 5_==0) {
$found_zero = 1;

last;

;

print "$found_zero \n";

1

CA
SV

c't:

¢ Use the built in function sort

* The results may surprise youl!
my (@words = ("c","b","a","B");
(@words = sort (@words;
print "(@words\n";

Babc

my (@numbers = (10,3,1,2,100);
(@numbers = sort (@numbers;
print "(@numbers\n";
11010023

ﬂ

n

v
SUI L

sort uses a default sorting operator cmp that sorts "ASClIbetically", with capital
letters ranking over lower-case letters, and then numbers.

sort (@words;
is equivalent to:

sort {$a cmp $b} @words;

cmp 1s a function that returns three values:
— -1if $ale $b
— 0if $a eq $b
— +11if $age $b

where le, eq, and ge are string comparison operators.

$a and $b are special scalars that only have meaning inside the subroutine block
argument of sort. They are aliases to the members of the list being sorted.

i féﬁ/ é 1 /A | M hAre
L 19d ~— -P f & 1id IMDEers

e <=> (the "spaceship operator") is the numerical equivalent to the cmp operator:

— -1if $a< $b
— 01f $a==9%b
— +1if §a > $b

* You can provide your own named or anonymous comparison subroutine to sort:
my (@numbers = (10,3,1,2,100);
@numbers = sort {$a <=> $b} @numbers;
print "@numbers\n";
12310100
(@numbers = sort {§b <=> $a} @numbers;
print "@numbers\n";
10010321

\V4 1 1 VN N

vt o =
L SUIlILIllId

Q
oYl

v\ 7
|

° ﬁf"‘\l
y. SCdl

d dalS

* Declare: my $age;

* Set: age = 29; Jage = “twenty-nine”;

* Access: print “$age\n”’; twenty-nine

v

Q A
Syintd

\/ 1 1V N

Sumimad

W\ 7o
|

Y. alffays

Declare: my (@children;

Set all: (@children = (““Troy”,”Anea”);

Set element: $children[0] = “Troy Alexander”;

Access all: print “(@children\n”’; Troy Alexander Anea

Access element: print “$children|[1]\n”’; Anea

\V4 1 1 VN N

vt ~ =
L S Iiiiia

Q
OYI

W\ Jo I
| 1V

VK

: ops
foreach my $child (@children) {

print “$child\n”*;
j

Troy Alexander
Anea

for (my $i = 0; $i < @children; $i++) {
print “$i: $children|[$i]\n”’;

h

0: Troy Alexander

1: Anea

Cvinnt
Synt

\V4 1 1 VN N

' (Y 2 WA V\A
SUlllllidl U

~~ 14 S
V. condait

d ITIONS
foreach my $child (@children) {
if (length($child) > 4) {
print “$child\n”’;
h

j
Troy Alexander

A~ A nA warvriFine F
alul UVV|L||5L

@
)
N

DA
I\NC

Ng an

* open(A, ">sequence.txt") — creates a new file and opens it for
writing
* open(A, ">>sequence.txt') — opens an existing file for writing

* open(A, "sequence.txt") — opens an allready existing file for
reading

[sequence.bit - WordPad E@Q
File Edit View Insert Format Help
Dl SR # L =B B
g'l"l'll'Z'II'3'I'l-i'I'5|'I'E'll'?'II'E'I'lﬂl'l"H]I'l"H'll '12'II"|3'I"|I4'I$15_'I

kecTTTR

open(A , ">sequence.txt");
print A “AGCTTTA\n";
close(A);

For Help, press F1

MUM

~A
dlu

DA
I\NC

Ng d

open(A , ">>sequence.txt");

print A "AGCTTTA\n";
close(A);

open(A , "sequence.txt");
my $linel = readline *A;
my $line2 = readline *A;
close(A);

print "$linel | $line2\n";
AGCTTTA
| AGCTTTA

n A
NG

F

wrritirne A FilAac
VWIILIHTE LU T1HCO
seq eeeeee tut - WordPad E@Ig
File Edit View Inset Format Help
DS H SR #h 2B B
g'l'1'.l'2'II'3'I'.4'I'5I'I'G'II'T-"'II'B'I'IB'I'1D.'l"|‘|'ll '12'1.'13'“1.4"'1%#
AGCTTITIA
LECTITA
For Help, press F1 MNUM .

Readil |g

my (@seqs; chomp removes ”\n” from
open(A , "sequence.txt"); the end of the line if it
while (<A>) { exists

chomp;

push @seqs, $_;
h
close(A);

print ’(@seqs\n";
AGCTTTA AGCTTTA

Splitting

* You can split a string on any substrings that match a recular-
p g y g g

expression with:

g strings: spli

— (@array = split /PATTERN/, $string;
— split /\s/, "do the twist"; # gives ("do","the","twist")

— split //, "dice me";

glVCS ("d" " " "C","e"," H,Hm","e");

e Extremly useful when parsing files:

my (@genes;

open(A , "sequences.txt");
while (<A>) {
chomp;
my ($gene) =
push @genes, $gene;

j
close(A);

print "@genes\n";

It

sequences.txt - WordPad

File Edit Wiew Insert Format Help

hed SB # &+ 2B B

g'I"I'I'2'I'3'I'4'I'5'I'ﬁ'l'?'l'3'l' B

-H] |

AT

.12.

1130

1400

.1%_,

split /\s/;

AFG AGCTTTARRR
D5ST GTAAGCTITA
WET AARTTGCCTARARRARL

For Help, press F1

MUM

Cvw+w
LALUI

my $string = "AC Milan";

my $fragment = substr $string, 3;
print "$fragment\n";

Milan

my $string = "F.C. Internazionale";
my $fragment = substr $string, 5, 5;
print "$fragment\n";

Inter

my $string = "F.C. Internazionale";
my $fragment = substr $string, -7, 4;
print "$fragment\n";

zion

)

D
Q)

"~ \/ MM"\V\A
U

/AN NDM\/. ~~ I
@ARGV: commana-i

=] Open Perl IDE <testpl> - [CAUsers\TorgeirWORK\Activities\Teaching\LanguagesAlgorithms\Labs\test.pl]

Eile Edit 5Search Project Run Window Help

[
=]

11 close (R);

12 |print "Egenes\n";
13

14

4 e

Console EnmEIutput] EaIIStack]

Start parameter;

= ||| *x
O = & () = E O
Desktu:up:l ﬂ test.pl]
. | 1 use strict; -
Yariables]Breakpaints] Mudulesl 2 n=e waruings;
M ame < Type | V.. 3
4 |my Egenes;:
S|lopen(L , SARGV[O]):
& while () {
7 chomp ; =
8 my (Sgene) = split /\=/:
3 push Egenes, Sgene;

Ready

IIIf'\ \AII

Af‘ 7\
ML 1UVV

F+
wn

g Im

e Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

