
Lecture 1

Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umeå Plant Science Center (UPSC)

fComputational Life Science Centre (CLiC)

My research interestsMy research interests

A 14 2003A 12 2003

A systems biology approach to model the transcriptional network in trees

Aug. 14, 2003Aug. 12, 2003

Aug. 16, 2003 Aug. 17, 2003

Course goalsCourse goals
At the end of this course you will know how to :At the end of this course you will know how to :
• write and debug basic Perl programs
• select the correct algorithm design for a given problem and do g g g p

time/space complexity analysis
• use online resources with Perl and use online Perl libraries and

i finterfaces
• use Perl to pipeline other programs (e.g. BLAST) and parse

outputoutput
• combined the above to solve practical Bioinformatics problems

Course information (I)Course information (I)

M d Th d• Monday - Thursday:
– 9 – 12: lectures and lab summary
– 13 – 16: computer labs13 16: computer labs

• Friday
– 9 – 16: project in the computer lab

• Credit points: 2ECTS
• To pass:

– attend lectures and labs
– send lab and project documentation at the end of each day to:
jenny.onskog@plantphys.umu.se

Course information (II)Course information (II)

• Course webpage:
– http://www.trhvidsten.com/CPLA/

• Here you can find the
– course planp
– online resources

• and downloadand download
– lecture slides
– labs/project descriptionlabs/project description
– additional material

C l b 336Computer labs, MA336

This lectureThis lecture

I d i i• Introduction to programming:
– programming languages

d d– pseudo-code
• Introduction to Perl 1

b– basic expressions
– scalars
– arrays
– loops

conditions– conditions
– file handling

AlgorithmAlgorithm

Al i h f i i h• Algorithm: a sequence of instructions that one must
perform in order to solve a well-formulated problem
C l i h l i i i• Correct algorithm: translate every input instance into
the correct output
I l i h h i l i i• Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct
outputoutput

• Many successful algorithms in bioinformatics are
incorrectincorrect

ProgramsPrograms

Al i h i l d i i• Algorithms are implemented in a programming
language to form programs
P i f• Programs consists of:
– Variables: names with values (float, integer, string) or

arrays/tables/hashes of valuesarrays/tables/hashes of values
– Conditional statements: IF-THEN-ELSE
– Loops: while for until etcLoops: while, for, until, etc.
– Modularity: procedures/functions/sub-

routines/objects/methodsj
• Pseudo-code: programming language-independent,

often used to sketch a program using pen and paper

Pseudo codePseudo‐code

S i bl S li f iSorting problem: Sort a list of n integers:
a = (a1, a2, …, an) e.g. a =(7,92,87,1,4,3,2,6)

SelectionSort(a,n)()
1 for i ← 1 to n-1
2 j ← Index of the smallest element j d s s

among ai, ai+1, …, an
3 Swap elements a and a3 Swap elements ai and aj
4 return a

Example runExample run

i = 1: (7,92,87,1,4,3,2,6)
i = 2: (1,92,87,7,4,3,2,6)()
i = 3: (1,2,87,7,4,3,92,6)
i = 4: (1 2 3 7 4 87 92 6)i = 4: (1,2,3,7,4,87,92,6)
i = 5: (1,2,3,4,7,87,92,6)
i = 6: (1,2,3,4,6,87,92,7)
i = 7: (1,2,3,4,6,7,92,87)

(1,2,3,4,6,7,87,92)

Syntax versus semanticsSyntax versus semantics

S h l f i lid i• Syntax: the rules for constructing valid statements in a
programming language

• S m nti th m nin f pr r m• Semantics: the meaning of a program

• A ifi l ith i l t d i diff t i• A specific algorithm implemented in different programming
languages would use different syntax, but have the same
semanticssemantics

• Syntax is easy and can be checked before execution (the
interpreter will tell you when you make syntax mistakes)p y y y)

• Semantics is hard and ”bugs” typically only reveal
themselves at execution time

Programming languagesProgramming languages

I i i d ib i• Imperative programming: describes computation as
statements that change a program state (e.g. Perl,
Fortran C and Java)Fortran, C, and Java)

• Functional programming: treats computation as the
evaluation of (mathematical) functions and oftenevaluation of (mathematical) functions, and often
avoids state (e.g. LISP)

• Declarative programming: while imperative programs• Declarative programming: while imperative programs
explicitly specify an algorithm to achieve a goal,
declarative programs explicitly specify the goal anddeclarative programs explicitly specify the goal and
leave the implementation of the algorithm to the
support software (e.g. PROLOG)pp (g)

Sorting: imperative/proceduralSorting: imperative/procedural

S i bl S li f iSorting problem: Sort a list of n integers:
a = (a1, a2, …, an)

SelectionSort(a,n)()
1 for i ← 1 to n-1
2 j ← Index of the smallest element j d s s

among ai, ai+1, …, an
3 Swap elements a and a3 Swap elements ai and aj
4 return a

Pseudo-code hides ugly details such as

“Swap elements ai and aj”p i j

1 tmp ← a1 tmp ← aj

2 aj ← ai

3 ai← tmp

or

“j I d f h ll l ”“j ← Index of the smallest element among ai, ai+1, …, an”

I d OfMi (fi l)IndexOfMin(array,first,last)
1 index ← first
2 f k fi + 1 l2 for k ← first + 1 to last
3 if arrayk < arrayindex
4 i d k4 index ← k
5 return index

Remember, though, that the devil is in the details!

RecursionRecursion

RecursiveSelectionSort(a,first,last)
1 if (first < last)(f)
2 index ← Index of the smallest element

among a a aamong afirst, afirst+1, …, alast

3 Swap elements afirst and aindex

4 a ← RecursiveSelectionSort(a,first+1,last)
5 return a

Example IExample I

W i d d f h l d iWrite pseudo-code for a program that solves a quadratic
equation ax2 + bx + c = 0:

QuadraticEquationSolver (a, b, c)

acbb 42±
Remember that:

a
acbbx

2
4−±−

=

QuadraticEquationSolver(a b c)QuadraticEquationSolver(a, b, c)
1 root ← b2-4ac;
2 if root < 02 if root < 0
3 return “No solution”

4 x1 ←

5 2
2a

rootb- +

rootb- −5 x2 ←

6 if x1 = x2

2a
rootb

6 if x1 x2
7 output ”Solution: x = x1”
8 else8 else
9 output ”Solutions: x = x1 or x = x2”

Example IIExample II

Write pseudo-code for a program that removed duplicates
in an array a = (a1, a2, …, an)

RemoveDuplicates (a)

E (1 2 2 4 4) t t (1 2 4)E.g. a = (1, 2, 2, 4, 4) outputs (1, 2, 4)

RemoveDuplicates(list n)RemoveDuplicates(list, n)
1 newlist ← ()
2 for i ← 1 to n2 for i ← 1 to n
3 m ←length of newlist
4 foundDuplicate ← false4 foundDuplicate ← false
5 for j ← 1 to m
6 if list = newlist6 if listi = newlistj
7 foundDuplicate = true
8 break8 break
9 if foundDuplicate = false
10 dd li t t ne li t10 add listi to newlist
11return newlist

Example IIIExample III

Write pseudo-code for a program that counts from 0 to n
= (n1, n2, ..., nk):

Count (n)

00

E.g. n = (1, 2) outputs:
01
02
1010
11
12

Count(n m)Count(n, m)
1 c ←(0, 0, …, 0)
2 while forever2 while forever
3 for i ←m to 1
4 if c = n4 if ci = ni
5 ci ←0
6 else6 else
7 ci ← ci + 1
8 break8 break
9 output c
10 if c = (0 0 0)10 if c = (0, 0, …, 0)
11 break

What is Perl ?What is Perl ?

• Perl was created by Larry Wall

• Perl = Practical Extraction and Report Language

• Perl is an Open Source project

P l i l tf i l• Perl is a cross-platform programming language

Why PerlWhy Perl

• Perl is a very popular programming language
• Perl allows a rapid development cyclep p y
• Perl has strong text manipulation capabilities
• Perl can easily call other programsPerl can easily call other programs

• Existing Perl modules exists for nearly everything
– http://www.bioperl.org
– http://www.cpan.org/ (Comprehensive Perl Archive

Network)

ActivePerlActivePerl

Open Perl IDEp

Our first Perl programOur first Perl program

i “ i " k i h duse strict;
use warnings;

“use strict" makes it harder
to write bad software

print "Hello world!\n"; ”use warnings” makes Perl
l i h i

p

complain at a huge variety
of things that are almost
always sources of bugs in

Hello world!

always sources of bugs in
your programs

Hello world!
”\n” prints a new line

Perl scalars
• Perl variables that hold single values are called Scalars.
• Scalars hold values of many different types such as strings, characters, floats, y yp g , , f ,

integers, and references
• Scalars are written with a leading $, like: $sum
• Scalars as all variables are declared with my like my $sum• Scalars, as all variables, are declared with my, like my $sum
• Perl is not a typed language: scalars can be strings, numbers, etc.

• You can reassign values of different types to a scalar:• You can reassign values of different types to a scalar:
my $b = 42; $b = "forty-two"; print “$b\n”;
forty-two

• Perl will convert between strings and numbers for you:• Perl will convert between strings and numbers for you:
my $a = "42" + 8; print “$a\n”;
50
m $a = "Perl" + 8 print "$a\n"my $a = "Perl" + 8; print "$a\n";
Argument "Perl" isn't numeric in addition (+) at test.pl line 4.
8

Perl scalars: some numerical operatorsPerl scalars: some numerical operators

• $i++; # $i = $i + 1;
• $i--; # $i = $i - 1;
• $i+= 5; # $i = $i + 5;
• $i/=5; # $i = $i / 5;$i/=5; # $i = $i / 5;
• $i**3; # $i * $i * $i;
• $i = sqrt($i)

The three fundamental datatypes in Perlyp

days

$today

Mon Tue Wed Thu

$today

Mon

Scalar Array Hash

• The sigills $,@,% must always be used.
• You can use different datatypes with the same name in the same program.

Perl Arraysy
• Arrays hold multiple ordered values.

• Arrays are written with a leading @, like: @shopping_list
• Arrays can be initialized by lists.

my @s = ("milk" "eggs" "butter"); print "@s\n";my @s = (milk , eggs , butter); print @s\n ;
milk eggs butter

• Arrays are indexed by integer. The first scalar in an array has
index 0 and no matter its size, the last scalar has index -1:
my @s = ("milk","eggs","butter"); print “$s[0] - $s[-1]\n";

ilk b ttmilk - butter
• The sizes of arrays are not declared; they grow and shrink as

necessary.
my @s = ("milk","eggs","butter"); $s[4] = "beer"; print "@s\n";
Use of uninitialized value in join or string at test.pl line 4.

lk b bmilk eggs butter beer

Perl Arraysy
• Arrays can be iterated over in foreach loops. You don't need to

know their size:know their size:
my @s = ("milk","eggs","butter");
foreach (@s) {()

print "$_\n";
}
milk
eggs
butterbutter

$_ is known as the "default input and
pattern matching variable".

This is all equivalent:

my @s = ("milk","eggs","butter");
foreach (@s) {

i t

my @s = ("milk","eggs","butter");
foreach my $item (@s) {

i t "$it \ "print;
print "\n";

}

print "$item\n";
}

}

my @s = ("milk","eggs","butter");
foreach (@s) {

print "$_\n";
}}

Perl Arraysy
An array in scalar context evaluates to its size. You can easily get the
index of the last item in an arrayindex of the last item in an array.

my @s = ("milk","eggs","butter");
my $length = @s;y g
print "$length\n";
3

my @s = ("milk","eggs","butter");
my $last_index = $#s;
print "$last_index\n";
2

my @s = ("milk","eggs","butter");
print "$s[$#s]\n";
butter

Perl Arraysy
Special commands add or remove items to the front or back of arrays.
push and pop add to the back making a stackpush and pop add to the back, making a stack.

my @s = ("milk","eggs","butter");
push @s, "beer";p
print "@s\n";
milk eggs butter beer

my @s = ("milk","eggs","butter");
pop @s;
print "@s\n";
milk eggs

my @s = ("milk","eggs","butter");
my $last_item = pop @s;
print "$last_item\n";
butter

Perl arrays y
grow or shrink as needed

"fred" "wilma"

@data

my @data = ("fred","wilma");

Perl arrays y
grow or shrink as needed

"fred" "wilma" 42

@data

my @data = ("fred","wilma");

push @data, 42;

Perl arrays y
grow or shrink as needed

"fred" "wilma" 42 undef undef "dino"

@data

my @data = ("fred","wilma");

push @data, 42;

$data[5] = "dino";

undef
• The value of all uninitialized scalars (and scalar elements of arrays and hashes)

has the special scalar value undef.has the special scalar value undef.
• undef evaluates as 0 when used as a number and "" when used as a string, which

is why you most often don't have to initialize variables explicitly before you use
themthem.
my $a; $a++; print "$a\n";
1
my @a = (1,2);
$a[3] = 23; print "@a\n";
Use of uninitialized value in join or string at test.pl line 4.Use of uninitialized value in join or string at test.pl line 4.
1 2 23

• Even after a scalar has been assigned, you can undefine them using the undef
operatoroperator.

$a = undef;
undef @a;undef @a;

Array indexingArray indexing

"fred" "wilma" 42 undef undef "dino"

@data
$data[0] $data[5]$data[0] $data[5]

$data[$#data]

$d [1]$data[‐1]

Arrays and lists in assignmentsArrays and lists in assignments

"fred" "wilma" 42 undef undef "dino"

@data

You can initialize or set arrays or lists by arrays or lists:
my ($man,$wmn) = ($data[0],$data[1]); print "$man $wmn\n";
fred wilma
my ($man,$wmn) = @data; print "$man $wmn\n";
fred wilmad w
@data = ("barney", "bambam"); print "@data\n";
barney bambam
my @mydata = @data; print "@data | @mydata\n";
barney bambam | barney bambamy | y

You can swap elements without a temporary:
($data[1] $data[0]) = ($data[0] $data[1]); print "$data[0] $data[1]\n";($data[1],$data[0]) = ($data[0],$data[1]); print $data[0] $data[1]\n ;
bambam barney

Array slicesArray slices

"fred" "wilma" 42 undef undef "dino"

@data

You can select multiple elements from an array at once.
my ($man,$wmn) = @data[0..1]; print "$man $wmn\n";
fred wilma
@data[2,3] = ("barney","bambam"); print "@data\n";
fred wilma 42 barney bambam dinofred wilma 42 barney bambam dino
my @mydata = @data[0..2,5]; print "@mydata\n";
fred wilma barney dino
@data[0,1] = @data[1,0]; print "@data\n";
wilma fred 42 barney bambam dinowilma fred 42 barney bambam dino

Adding elements to array endsAdding elements to array ends

$a[‐1]$a[0]
shift @a pop @a$a[1]$a[0]

• • •

unshift @a, $b push @a, $b

unshift @a, @b push @a, @b

Loops: Iterating over Arrays
for ($i = 0; $i < @data ; $i++) { # c-style

print "$data[$i]\n";

}}

for (0..$#data) { # perl-style, default scalar is index() { p y

print "$data[$_]\n"; # use when you need the indices explicitly

print "The $_","th element is $data[$_]\n"; # like here

}

foreach (@data) { # perl-stylier default scalar is elementforeach (@data) { # perl-stylier, default scalar is element...

print "$_\n";

}

while (@data) { # evaluates false when scalar(@data) == 0

i hif @d "\ " # id ff 0 h lprint shift @data, "\n"; # side-effect: removes 0th element

}

conditions
• if – else statements are used to test whether an expression is true or false

if ($ < 0) {if ($a < 0) {
print "$a is a negative number\n";

} elsif ($a == 0) {} elsif ($a 0) {
print "$a is zero\n";

} else {
print "$a is a positive number\n";

}
• U th f ti d fi d t t t if l h th l d f• Use the function defined to test if a scalar has the value undef

if (defined $a) {
$a++;;

}
equivalent to
$ ++ if d fi d $$a++ if defined $a;

The rules of truth in PerlThe rules of truth in Perl

• Only Scalars can be True or FalseOnly Scalars can be True or False
• undef is False

"" i F l• "" is False
• 0 is False
• 0.0 is False
• "0" is False0 is False
• Everything else is True (including "0.0" !)

Logical expressionLogical expression

• $a == $b # compare numbers, true if $a equal to $b
• $a != $b # compare numbers, true if $a is not equal to $b

$ $b # i if $ i l $b• $a eq $b # compare strings, true if $a is equal to $b
• $a ne $b # compare strings, true if $a is not equal to $b
• !$a # boolean true if $a is 0 false if $a is 1• !$a # boolean, true if $a is 0, false if $a is 1

Controlling loops: next and lastControlling loops: next and last

next skip to the next iteration

my @a = (1,2,5,6,7,0);
last ends the loop

my @a = (1,2,5,6,7,0);

my @filtered; my $found_zero = 0;
foreach (@a) {

next if $_ < 5;
h @fil d $

foreach (@a) {
if ($_ == 0) {

push @filtered, $_;
}

i t "@filt d\ "

$found_zero = 1;
last;

print "@filtered\n";
5 6 7

}
}
print "$found_zero \n";
1

Sorting arraysSorting arrays

U h b il i f i• Use the built in function sort

• The results may surprise you!The results may surprise you!
my @words = ("c","b","a","B");
@words = sort @words;
print "@words\n";
B a b c

my @numbers = (10,3,1,2,100);
@numbers = sort @numbers;@numbers sort @numbers;
print "@numbers\n";
1 10 100 2 3

sort
• sort uses a default sorting operator cmp that sorts "ASCIIbetically", with capital

letters ranking over lower case letters and then numbers

sort

letters ranking over lower-case letters, and then numbers.
sort @words;
is equivalent to:
sort {$a cmp $b} @words;

• cmp is a function that returns three values:
– -1 if $a le $b
– 0 if $a eq $b

+1 if $ $b– +1 if $a ge $b
• where le, eq, and ge are string comparison operators.
• $a and $b are special scalars that only have meaning inside the subroutine block$a and $b are special scalars that only have meaning inside the subroutine block

argument of sort. They are aliases to the members of the list being sorted.

sort {$a <=> $b} @numberssort {$a <=> $b} @numbers

< > (h " hi ") i h i l i l h• <=> (the "spaceship operator") is the numerical equivalent to the cmp operator:
– -1 if $a < $b
– 0 if $a == $b
– +1 if $a > $b

• You can provide your own named or anonymous comparison subroutine to sort:• You can provide your own named or anonymous comparison subroutine to sort:
my @numbers = (10,3,1,2,100);
@numbers = sort {$a <=> $b} @numbers;
print "@numbers\n";
1 2 3 10 100
@numbers = sort {$b <=> $a} @numbers;@numbers sort {$b $a} @numbers;
print "@numbers\n";
100 10 3 2 1

Syntax summary: scalarsSyntax summary: scalars

• Declare: my $age;
• Set: $age = 29; $age = “twenty-nine”;g g y
• Access: print “$age\n”; twenty-nine

Syntax summary: arraysSyntax summary: arrays

• Declare: my @children;
• Set all: @children = (“Troy”,”Anea”);(y)
• Set element: $children[0] = “Troy Alexander”;
• Access all: print “@children\n”; Troy Alexander AneaAccess all: print @children\n ; Troy Alexander Anea
• Access element: print “$children[1]\n”; Anea

Syntax summary: loopsSyntax summary: loops

f h $ hild (@ hild) {foreach my $child (@children) {
print “$child\n”;

}}
Troy Alexander
AneaAnea

for (my $i = 0; $i < @children; $i++) {(y $; $ @ ; $) {
print “$i: $children[$i]\n”;

}
0: Troy Alexander
1: Anea

Syntax summary: conditionsSyntax summary: conditions

foreach my $child (@children) {
if (length($child) > 4) {(g ())

print “$child\n”;
}}

}
Troy Alexander

Reading and writing to filesReading and writing to files

(A " ") fil d i f• open(A, ">sequence.txt") – creates a new file and opens it for
writing

• open(A ">>sequence txt") – opens an existing file for writingopen(A, >>sequence.txt) – opens an existing file for writing
• open(A, "sequence.txt") – opens an allready existing file for

readingg

open(A , ">sequence.txt");
print A “AGCTTTA\n";
close(A);

Reading and writing to filesReading and writing to files

(A ">> t t")open(A , ">>sequence.txt");
print A "AGCTTTA\n";
close(A);()

open(A , "sequence.txt");p (, q);
my $line1 = readline *A;
my $line2 = readline *A;
l (A)close(A);

print "$line1 | $line2\n";
AGCTTTA
| AGCTTTA

Reading filesReading files

my @seqs;
open(A , "sequence.txt");

chomp removes ”\n” from
the end of the line if it

while (<A>) {
chomp;

exists

push @seqs, $_;
}
close(A);
print ”@seqs\n";
AGCTTTA AGCTTTA

Splitting strings: splitSplitting strings: split
• You can split a string on any substrings that match a regular-

expression with:expression with:
– @array = split /PATTERN/, $string;
– split /\s/, "do the twist"; # gives ("do","the","twist")
– split //, "dice me"; # gives ("d","i","c","e"," ","m","e");split //, dice me ; # gives (d , i , c , e , , m , e);

• Extremly useful when parsing files:
my @genes;g
open(A , "sequences.txt");
while (<A>) {

chomp;p;
my ($gene) = split /\s/;
push @genes, $gene;

}}
close(A);
print ”@genes\n";
AFG DST WRTAFG DST WRT

Extracting fragments: substrExtracting fragments: substr

$ t i "AC Mil "my $string = "AC Milan";
my $fragment = substr $string, 3;
print "$fragment\n";
Milan

my $string = "F.C. Internazionale";
my $fragment = substr $string, 5, 5;
print "$fragment\n";
Inter

my $string = "F.C. Internazionale";
my $fragment = substr $string -7 4;my $fragment substr $string, 7, 4;
print "$fragment\n";
zion

@ARGV command line arguments@ARGV: command‐line arguments

AcknowledgementsAcknowledgements

• Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

