LAB 2 — Perl Il

Installation

OBS: On the course computers these programs are already installed!
ActivePerl: http://www.activestate.com/activeper!

Open Perl IDE: http://open-perl-ide.sourceforge.net/

Task 1 - Basics

a) Hashes
Hashes let us store key-value pairs:

my %cities;

foreach ("Oslo™,"Trondheim™, "Bergen') {
$cities{$_} = "Norway";

+

foreach ('Stockholm™,"Malmé™, "Kiruna™) {
$cities{$_} = "Sweden";

+

print "Oslo is in $cities{0Oslo} and Stockholm in $cities{Stockholm} you
ignorant ----1\n"";

Notice that while elements in arrays are accessed by an integer index (e.g. Scities[2]), values in
hashes are accessed by a key of any type (e.g. $cities{Stockholm}). All keys can be retrieved using
keys:

my @cities = keys %cities;
print "@cities\n";

The existence of a key is checked using exists:

my @check = ("'Umea","Malmo™);
foreach (@check) {
if (exists $cities{$_}) {
print "$_is stored\n";
} else {
print "$_ is not stored\n";
}
+

b) Data structures

Scalers can be references that point to any data type and can thus be used to build complex data
structures. In practice, we typically don’t think of these references. Instead, we think of hashes of
hashes, hashes of arrays, arrays of arrays, etc. This is an example of hashes of hashes:

my %cities;
foreach ('Oslo","Trondheim",
$cities{"Norway"}{$_} = 1;

Bergen™) {

}

foreach (*'Stockholm™,"Malmo™,"Kiruna™) {
$cities{"Sweden"}{$_} = 1;
bs

Notice how countries and cities are stored as pairs of keys, while the values are unimportant (i.e. 1 for all
pairs of keys). exISts can be used to check also the existence of pairs :

print "Is Kiruna in Norway:";

if (exists $cities{Norway}{Kiruna}) {
print ™ YES!\n";

} else {
print ™ NO\n";

be

print "lIs Oslo in Norway:";

if (exists $cities{Norway}{Oslo}) {
print ' YESI\n";

} else {
print " NO\n";

+

Checking for exists of two keys can be dangerous: if the first key does not exist, it will be created! Try
exists $cities{Finland}{Stockholm} followed by exists $cities{Finland}. How
would you solve this problem?

c) Subroutines

Subroutines are great ways of making your program shorter, easier to read and maintain ... and much
more:

my %cities;
foreach ("'Oslo","Trondheim",
Scities{"Norway"}{$ } = 1;

Bergen'™) {

}

foreach ('Stockholm™,"Malmo™," "Kiruna™) {
Scities{"Sweden"}{$ } = 1;
+

print "Is Kiruna in Norway:";
isin(\%cities,"Kiruna", " Norway');

print "Is Oslo in Norway:';
isin(\%cities,"0Oslo", " "Norway');

sub isin {
my $hash = $ [0];

my $city = $ [1];
my $country = $ [2];

if (exists $hash->{$country}{$Scity}) {
print " YES\n";
} else {
print " NO\n";
}
+

Task 2 - Hashes

a) Write a program that removes duplicates from a list using hashes (this assignment was also given in
Labl).

b) Write a program that finds the intersection of two sets using hashes (an intersection of two sets is the
subset of elements that is in both sets/lists).
Task 3 - Nested data structures

a) Write a program that reads the gene expression values from microarray.txt into a table. If the user
input a single index (e.g. 3), then output the row corresponding to that index. If the user inputs two

indices (e.g. 3 2), then output the value corresponding to that entry in the table. Output error messages
if the indices are not valid.

b) The file network.txt lists regulatory interactions. The first column contains transcription factor, the
second column contains the type of interaction (positive or negative regulation) and the third column
contains the gene module regulated by the transcription factor.

Write a program that reads the content of the file and store it as hashes of hashes. If the user inputs a
transcription factor, then output all modules it regulates. If the user inputs a module, output the
transcription factor(s) that regulate it. Output error messages if the names do not exist.

Hint: Store the data as two hashes of hash. One where transcription factors is the first key and modules
are the second key, and one where modules are the first key and transcription factors the second.

Task 4 - Subroutines

a) Write a subroutine that takes three arguments: a table, index i, index j and a value. The subroutine
should change the element (i,j) to the given value in the table. Make two versions: One using call-by-
value and one using call-by-reference. Use the code and table in Task3a to test the subroutines.

b) Repeat Task 4a but move the two subroutines to a separate module. Again use the code and table in
Task3a to test the module.

To get the lab approved, send your code to: jenny.onskog (at)plantphys.umu.se

