Multivariate data analysis (MVA) - Introduction

Chemical and Biological data are often of Multivariate character

Methods such as: GC, UV, IR, NIR, NMR, MS, E-fores, HPLC, TLC, Sequensing, Gene arrays

.... applied to complex samples in chemistry and biology creates large data tables!

Variables: Often many, co-linear (correlated), unknown relevance

Measurements: Noisy, sometimes "missing values"

Different goals with Multivariate Analysis - Overview (understanding)

Relationships between observations (samples) - trends, groups, outliers

Relationships between variables - groupings, correlation

Explanation to trends, groups, outliers among observations

- which variables are important?

Different goals with Multivariate Analysis - Classification

Models for differences between known classes of observations

Explanation to differences between classes

Prediction of unknown samples with regards to class identity

Relationships between two blocks of variables (x and y).

Does a block of variables (x) contain information about the other block of variables (y)?

A Regression problem! (Multivariate regression)

Questions for Multivariate data tables

Questions about samples (observations)

Are there any outliers? Are there groups and/or trends? Are there similarities/dissimilarities between samples? How do new samples behave?

Questions about variables

Which variables cause outliers?Which variables are responsible for groupings and/or trends?Which variables are responsible for class separations?How do new variables behave?

Types of data

- What types of data for **Modelling** and **Analysis** are there?
- Univariate data K = 1 Qua
- Bivariate data K = 2
- Few-variate data $K \le 5$
- Multivariate data $K \ge 6$
- Megavariate data $K \ge 1000$

- Quantitative
- Qualitative
- Processes (Continuous/Batch)
- Time Series (Stationary/Dynamic)
- Controlled/Uncontrolled

Methods of Analysis

- COST Approach
 - Plot and evaluate one variable or a pair of variables at time
 - OK 50 years ago (few variables)

Classical Statistics

- Find a relationship between a few of the X's and one Y at a time
- OK 50 years ago (few and essentially uncorrelated variables)
- Multivariate Analysis
 - Model all the variables together to find relationships between all the X's and all the Y's

Problems with univariate methods for Multivariate data

Univariate statistical analysis underestimates or overestimates the information in Multivariate data.

The solution to this problem is to use *Multivariate Projection methods*.

By *MultiVariate Analysis (MVA)* all variables are analyzed simultaneously.

Multivariate tools

- **PCA** Principal Component Analysis (general overview of multivariate data)
- PLS Partial Least Squares Projection to Latent Structures (regression problem)

SIMCA Soft Independent Modelling of Class Analogy (classification) (PCA + PLS)

Methods that can handle *co-variation* between *variables*.

Why not univariate analysis of Multivariate data?

Two problems:

- (1) Risk for random correlations (Type I error, *false positives*)
- (2) Risk for not seeing the information (Type II error, *false negatives*)

Many variables increase the risk for random correlations between variables!

Risk for random correlation (Type I, false positives) = $1 - 0.95^{K}$

К	5	10	20	40	60	80	100	150
Risk	0.2262	0.40132	0.6415	0.8715	0.9539	0.9835	0.9941	0.9995

Why not univariate analysis of Multivariate data?

(1) Risk for random correlations (Type I error, *false positives*)

Why not univariate analysis of Multivariate data?

(2) Risk for not seeing information (Type II error, *false negatives*)

• The measured variables are often correlated

• Most deviating samples (outliers) aren't found until all variables are analysed together (key to early fault detection)

• The information is found in the variable correlations not in the individual signals!

Univariate analysis/Multivariate analysis

Classical statistical methods

- Multiple Linear Regression (MLR)
- Canonical Correlation
- Linear Discriminant analysis (LDA)
- Analysis of variance (ANOVA)
- Maximum likelihood methods

Long and Thin

Assumptions

- Independent X-variables (orthogonal)
- X-variables are exact (no error in X)
- Residuals are normally distributed

Multivariate analysis

Projection methods

PCA, PLS, PCR, PLS-DA

Assumptions

- X-variables not independent
- X-variables can contain errors
- Residuals can have structure

View data in plots

Two variablea - plot them against each other instead of analyzing them one at a time!

Plots of data gives information!

Length (m)	Weight (kg)	
1.61	74	
1.63	75	
1.67	78	
1.68	73	
1.68	76	
1.68	80	
1.7	80	
1.72	79	
1.74	84	
1.75	80	
1.75	86	
1.77	99	
1.78	82	
1.79	86	
1.8	84	
1.85	88	
1.86	85	
1.87	94	
1.89	86	
1.89	90	
1.92	93	
1.92	93	
1.94	96	
1.98	96	

Construct appropriate plots!

Length (m)	Weight (kg)
1.61	74
1.63	75
1.67	78
1.68	73
1.68	76
1.68	80
1.7	80
1.72	79
1.74	84
1.75	80
1.75	86
1.77	99
1.78	82
1.79	86
1.8	84
1.85	88
1.86	85
1.87	94
1.89	86
1.89	90
1.92	93
1.92	93
1.94	96
1.98	96

Latent variables

- Latent variables describe the underlying (hidden) information (variation) in a studied system characterized by a number (K) of experimental variables.
- Many variables are correlated with each other, i.e. describe the same variation in the experimental space.
- Latent variables Principal components (describe the variation in the system)
- PCA Models variation in one data block (X) in latent variables (Model: X = TP' + E)
- *PLS* Models variation in two data blocks (X, Y) in latent variables and correlates these blocks by regression. (Model: X = TP' + E, Y = TC' + F)
- By using projection methods (PCA, PCR, PLS, ...) the variation in a system can be describe by a few orthogonal latent variables (few compared to the (K) variables used to describe the system initially)

Latent variables (PCA)

- A principal component (latent variable) consists of two parts (score $(t_i) + loading (p_i)$)
- Scores (t) describe the variation in the sample direction i.e. differences/similarities between samples
- Loadings (p) describe the variation in the variable direction i.e. differences/similarities between variables and additionally give an explanation to the variation in scores.
- The principal components are orthogonal to each other and explain the variation in X that is based on a number (K) of often correlated variables.
- The number of principal components (A) is often a lot less than the number of variables (K) in X. 10/9/2012 MVA intro 2008 H. Antti 17

Latent variables (PCA)

 PC_2 describes the largest direction of variation in $X = E_1$

From data table to variable space

The whole table produces a swarm of points in variable space

The whole table produces a swarm of points in variable space

Mean Centering – move the centre of the points (average) to the origin of the variable space

The first principal component (PC_1) is set to describe the largest variation in the data, which is the same as the direction in which the points spread most in the variable space

<u>The Score value</u> (t_{i1}) for the point i is the distance from the projection of the point on the 1:st component to the origin.

 PC_1 hence is the first latent variable in a new coordinate system that describes the variation in the data.

The second principal component (PC₂) is set to describe the largest variation in the data, Perpendicular (orthogonal) to the 1:st component

<u>The Score value</u> (t_{i2}) for the point i is the distance from the projection of the point on the 2:nd component to the origin.

 PC_2 hence is the second latent variable in a new coordinate system that describes the variation in the data.

var. 2 The loading (p) describes the original variables importance for Respective PC. This is the same as the similarity in direction between the original variable and the PC.

The loading (p) is described as the cosine of the angle between the original variable and the PC.

Imagine a situation where the largest direction of variation in the data coincide with variable 1. This means that the direction for the 1:st principal component will coincide with the direction of variable no.1.

Two PC:s make up a plane (window) in the K-dimensional variable space.

If the points are projected down on the plane, it can be lifted out and be viewed as a two dimensional plot describing the objects relationships, a so called *score plot* (t_1/t_2) . In this plot similarities/dissimilarities between objects (samples) can be seen.

The corresponding *loading plot (p1/p2)* describes the variables relationships and is also a means for interpreting the score plot by telling which variables are responsible for similaritie/dissimilarities between objects.

Det perpendicular distance from the object to the Projection on the plane is the *residual* (E) or the variation not described by the two PC:s.

The Score plot t1/t2 shows two clearly separated classes of observations (A and B).

The Loading plot p1/p2 show the Three variables influence on the two principal components.

Questions!

1. What is causing the samples in class A to be similar to each other and the samples in class B to be similar to each other.

2. What is causing the samples in class A to be different from the samples in class B?

29

Answer Question 1

Overlay the plots!

- All samples in class A have got high values for var. 1 (positively correlated)
- All samples in class B have got high values for var. 2 (positively correlated)
- Var. 3 has got low loading values in both components (no influence)

30

Answer Question 2

Define the direction for the difference between A and B in both plots.

Project the variables onto the direction in the loading plot.

The distance from the projection on the line to the origin is equal to the individual variables weight for the variation in that direction i.e. for the difference between A and B.

- -Var. 1 and Var. 2 are the variables that are most important for the separation between A and B. They are negatively correlated, which means that when one goes up the other one goes down. Class A has got high values for var. 1 in comparison with class B and vice versa.
- Var. 3 has got no significant influence on the separation in the identified direction.

PC₁ mot PC₂ defines a plane in the **3-dimensional variable space.**

32

PCA (<u>Principal</u> <u>Component</u> <u>A</u>nalysis)

Six people (three women and three men) described by three variables (shoe size, length, weight)

* women

	_			1	1.1.4 (1)
			shoesize	length (cm)	weight (kg)
	*	Pippi	37	168	55
	*	Annika	36	166	56
$\mathbf{X} \equiv$		Barry	42	185	82
	*	Prusiluskan	38	171	50
		Harry	41	174	66
		Larry	43	180	78
X =	*	Barry Prusiluskan Harry Larry	42 38 41 43	185 171 174 180	82 50 66 78

The values are presented in a data table X where each person defines an object and the three measures the variables.

Scores (t1/t2) show that men and women are separated in the first PC

Loadings (p1/p2) shows the variable importance for the two PC:s

Interpretation of scores and loadings together tell us that the difference between men and women, in this case, is that the men are heavier, are longer and also have bigger feet. The variable importance (weight) for the separation in PC 1 can be viewed in the loading plot.

Variable weights for the separation in PC 1: weight > length > shoe size

A comparison of visual interpretation of scores and loadings to "Contribution plot" in SIMCA shows that the same result is yielded.

Interpretation of the data table show that the conclusions drawn based on the model seem to picture the reality quite well

	shoesize	length (cm)	weight (kg)
	37	168	55
🔿 Annika	36	166	56
Barry	42	185	82
Prusiluskan	38	171	50
Harry	41	174	66
Larry	43	180	78

PCA has reduced the problem from three dimensions down to two dimensions without loosing any important information about the variation in the data.

Now we are interested in the difference within the group of women since it seems like there is a fairly large difference between Prusiluskan and Annika described by PC 2.

Interpretation of scores and loadings show that the difference is due to that Prusiluskan is longer, weighs less and has got bigger feet than Annika.

A comparison of visual interpretation of scores and loadings to "Contribution plot" in SIMCA shows that the same result is yielded.

Interpretation of the data table show that the conclusions drawn based on the model seem to picture the reality quite well

_		shoesize	length (cm)	weight (kg)
	Pippi			
	Annika	36	166	56
	Barry			
	Prusiluskan	38	171	50
	Harry			
	Larry			

PCA has reduced the problem from three dimensions down to two dimensions without loosing any important information about the variation in the data.

The data table X is a summary of the consumption of 20 different food stuffs in 16 European countries

Difficult to see differences/similarities when variables become many!

	Gr_Coffe	Inst_Coffe	Tea	Sweet	Biscuits	Pa_Soup	Ti_Soup	la_Pot	Fro_Fish	Fro_¥eg	Apples	Oranges	Ti_Frait	Jan	Garlic	Butter	Margariae	Olive_Oil	Youghurt	Crisp_Bread
Germany	90	43	88	19	57	51	19	21	27	21	81	75	44	71	22	91	85	74	30	26
Italy	82	10	60	2	55	41	3	2	4	2	67	71	э	46	80	66	24	94	5	18
France	88	42	63	4	76	53	11	23	11	5	87	84	40	45	88	94	47	36	57	3
Holland	96	62	98	32	62	67	43	7	14	14	83	89	61	81	15	31	97	13	53	15
Belgium	94	38	48	11	74	37	23	э	13	12	76	76	42	57	29	84	80	83	20	5
Luzembou	97	61	86	28	79	73	12	7	26	23	85	94	83	20	91	94	94	84	31	24
England	27	86	99	22	91	55	76	17	20	24	76	68	89	91	11	35	94	57	11	28
Portugal	72	26	77	2	22	34	1	5	20	3	22	51	8	16	89	65	78	92	6	9
Austria	55	31	61	15	29	33	1	5	15	11	49	42	14	41	51	51	72	28	13	11
Switzerl	73	72	85	25	31	69	10	17	19	15	79	70	46	61	64	82	48	61	48	30
Sweden	97	13	93	31		43	43	39	54	45	56	78	53	75	9	68	32	48	2	93
Denmark	96	17	92	35	66	32	17	11	51	42	81	72	50	64	11	92	91	30	11	34
Norway	32	17	83	13	62	51	4	17	30	15	61	72	34	51	11	63	94	28	2	62
Fisland	98	12	84	20	64	27	10	8	18	12	50	57	22	37	15	96	94	17		64
Spain	70	40	40		62	43	2	14	23	7	59	77	30	38	86	44	51	91	16	13
Ireland	30	52	99	11	80	75	18	2	5	3	57	52	46	89	5	97	25	31	3	9

"scores"

"loadings"

Characteristic food stuffs for different regions in Europe can be identified by interpreting scores and loadings together. *E.g. The nordic countries including Sweden consume high amounts of crisp bread (knäckebröd), frozen fish (fiskpinnar) and frozen vegetables.*

Difference between Sweden and Italy?

Define the direction for the separation between Sweden and Italy in scores and transfer it to the loadings. Interpretation can now be carried out by projecting the variables onto the line and measure the distance to the origin, which is equal to the variables weight for the explaining the variation along that direction .

Viewing the data table reveals that the interpretations based on the model seem to match the true results in the data!

		Gr_Coffe	last_Coffe	Tea	Sweet	Biscuits	Pa_Soup	Ti_Soup	In_Pot	Fro_Fish	Fro_¥eg	Apples	Oranges	Ti_Frait	Jam	Garlic	Butter	Margarine	Olive_Oil	Youghurt	Crisp_Bread	
	Germany	30	49	88	19	57	51	19	21	27	21	81	75	44	71	22	91	85	74	30	26	
	italy	82	10	60	2	55	41	3	2	4	2	67	71	3	46	80	66	24	94	5	18	ſ
	France	88	42	63	4	76	53	11	23	11	5	87	84	40	45	88	94	47	36	57	3	
Τ	Holland	96	62	98	32	62	67	43	7	14	14	83	89	61	81	15	31	97	13	53	15	Γ
	Belgium	94	38	48	11	74	37	23	9	13	12	76	76	42	57	29	84	80	83	20	5	ſ
Ι	Luxembou	97	61	86	28	79	73	12	7	26	23	85	94	83	20	91	94	94	84	31	24	
	England	27	86	99	22	91	55	76	17	20	24	76	68	89	91	11	95	94	57	11	28	
	Portugal	72	26	77	2	22	34	1	5	20	3	22	51	8	16	89	65	78	92	6	9	
	Austria	55	31	61	15	29	33	1	5	15	11	49	42	14	41	51	51	72	28	13	11	
	Switzerl	73	72	85	25	31	69	10	17	19	15	79	70	46	61	64	82	48	61	48	30	
	Sweden	97	13	93	31		43	43	39	54	45	56	78	53	75	э	68	32	48	2	93	ſ
	Denmark	96	17	92	35	66	32	17	11	51	42	81	72	50	64	11	92	91	30	11	34	ſ
	Norway	32	17	83	13	62	51	4	17	30	15	61	72	34	51	11	63	94	28	2	62	
	Fisland	98	12	84	20	64	27	10	8	18	12	50	57	22	37	15	96	94	17		64	
	Spain	70	40	40		62	43	2	14	23	7	59	77	30	38	86	44	51	91	16	13	
	Ireland	30	52	99	11	80	75	18	2	5	3	57	52	46	89	5	97	25	31	3	9	
- T																						T

Projection (PCA) has reduced the problem from 20 dimensions to 2 dimensions without loosing information about the important variation in the data. By using adequate plots and diagrams we can instead clarify the interpretation of the multivariate data table .

Difference between Sweden and England?

Define the direction for the separation between Sweden and England in scores and transfer it to the loadings. Interpretation can now be carried out by projecting the variables onto the line and measure the distance to the origin, which is equal to the variables weight for the explaining the variation along that direction .

Viewing the data table reveals that the interpretations based on the model seem to match the true results in the data!

	Gr_Coffe	Inst_Coffe	Tea	Sweet	Biscuits	Pa_Soup	Ti_Soup	la_Pot	Fro_Fish	Fro_¥eg	Apples	Oranges	Ti_Fruit	Jan	Garlic	Butter	Margarine	Olive_Oil	Youghurt	Crisp_Bread
Germany	90	43	88	19	57	51	19	21	27	21	81	75	44	71	22	91	85	74	30	26
Italy	82	10	60	2	55	41	3	2	4	2	67	71	э	46	80	66	24	94	5	18
France	88	42	63	4	76	53	11	23	11	5	87	84	40	45	88	94	47	36	57	3
Holland	96	62	98	32	62	67	43	7	14	14	83	89	61	81	15	31	97	13	53	15
Belgium	94	38	48	11	74	37	23	9	13	12	76	76	42	57	29	84	80	83	20	5
Luzembou	97	61	86	28	79	73	12	7	26	23	85	94	83	20	91	94	94	84	31	24
England	27	86	39	22	91	55	76	17	20	24	76	68	89	91	11	35	94	57	11	28
Portugal	72	26	77	2	22	34	1	5	20	3	22	51	8	16	89	65	78	92	6	9
Austria	55	31	61	15	29	33	1	5	15	11	49	42	14	41	51	51	72	28	13	11
Switzerl	73	72	85	25	31	69	10	17	19	15	79	70	46	61	64	82	48	61	48	30
Sweden	97	13	93	31		43	43	39	54	45	56	78	53	75	9	68	32	48	2	93
Deamark	96	17	92	35	66	32	17	11	51	42	81	72	50	64	11	92	91	30	11	34
Norway	92	17	83	13	62	51	4	17	30	15	61	72	34	51	11	63	94	28	2	62
Fisland	98	12	84	20	64	27	10	8	18	12	50	57	22	37	15	96	94	17		64
Spain	70	40	40		62	43	2	14	23	7	59	77	30	38	86	44	51	91	16	13
Ireland	30	52	39	11	80	75	18	2	5	3	57	52	46	89	5	97	25	31	3	9

Projection (PCA) has reduced the problem from 20 dimensions to 2 dimensions without loosing information about the important variation in the data. By using adequate plots and diagrams we can instead clarify the interpretation of the multivariate data table .

Scores give an indication that something is wrong. Scores as a multivariate control chart of the process provides the possibility for early fault detection.

By interpreting scores and loadings together an explanation can be found on which corrections can be based!

Sovr.M1 (PC), Untitled, Workset Contribution Scores, Obs208-AVG, Dif X scaled, weight=p, Comp1

Example, PCA (process), DModX

Outliers can also be found in DModX

DModX = **Distance** to **Model** in **X** (residual)

If the distance to the model for one observation is to large i.e. the residual for the observation is abnormally large, then the observation is considered to be an "outlier" (belongs to another class of observations).

DModX (Distance to Model in X)

Example, PCA (known classes)

70 aliphatic, alicyclic and aromatic amines for synthesis of pharmaceutical drugs were characterized by 17 property variables from the literature.

No.	Name	F.W.	m.p.	nd	density	b.p.	f.p.	pka	Mol V	Spec ref	Mol ref	clogP	logP	No. C	No. H	No. N	No. O	Rings
1	2-Amino-5-diethylaminopentane	158.29		1.4429	0.817		68		193.75	0.542	85.81	0.955		9	22	2	0	0
2	2-Amino-3,3-dimethylbutane	101.19	-20	1.413	0.755	102.5			134.03	0.547	55.35	1.501		6	15	1	0	0
3	2-Aminoheptane	115.22		1.4175	0.766	143	54	10.88	150.42	0.545	62.80	2.29	2.4	7	17	1	0	0
4	tert-Amylamine	87.17		1.3996	0.746	77	- 1		116.85	0.536	46.69	1.102		5	13	1	0	0
5	n-Butylamine	73.14	-49	1.4010	0.740	78	-14	10.65	98.838	0.542	39.634	0.923	0.97	4	11	1	0	0
6	(R)-(-)-sec -Butylamine	73.14		1.3936	0.720	63	-19	10.61	101.58	0.547	39.98	0.703	0.74	4	11	1	0	0
	(S)-(+)-sec-Butylamine	73.14	62	1.3930	0.731	62.5	-19	10.61	100.05	0.538	39.32	0.703	0.74	4	11	1	0	0
ê	Terr - Butylamine	157.14	-67	1.3780	0.696	46	-0	10.69	105.09	0.545	39.72	0.575	4	4	22	1	0	0
10	1.2 Dimethylloutylemine	101.10	15	1.430	0.787	100	12	10.64	141.12	0.554	57.65	4.097		6	25	1	0	0
11	3.3-Dimethylbutylamine	101.19		1.4085	0.752	115	5		134.56	0.550	55.64	1 721		6	15	1	ő	0
12	1.5-Dimethylbexylamine	129.25		1 4215	0.767	155	48	10.38	168 51	0.550	71.03	2.689		8	19	î	ŏ	ő
13	(±)-1.2-Dimethylpropylamine	87.17	-50	1.4055	0.757	85.5	-27		115.15	0.536	46.69	1.102		5	13	i	ö	ö
14	Dodecylamine	185.36	31		0.806	248		10.67	229.98			5.155		12	27	1	0	0
15	Ethylamine	45.09	-81	1.3663	0.689	16.6	-16	10.81	65.44	0.532	23.97	-0.135	-0.13	2	7	1	0	0
16	2-Ethylbutylamine	101.194	21.5	1.4209	0.776	125.5	13		130.40	0.542	54.89	1.851		6	15	1	0	0
17	(±)-2-Ethylhexylamine	129.25	-76	1.43	0.789	169	52		163.81	0.545	70.44	2.909	2.82	8	19	1	0	0
18	1-Ethylpropylamine	87.17		1.4055	0.748	90	2	10.59	116.54	0.542	47.26	1.232		5	13	1	0	0
19	Heptylamine	115.22		1.4243	0.777	155	35	10.66	148.29	0.546	62.92	2.51	2.57	7	17	1	0	0
20	1-Hexadecylamine	241.46	44			330	140	10.61				7.271		16	35	1	0	0
21	Hexylamine	101.19	-23	1.418	0.766	131.5	8	10.56	132.10	0.546	55.22	1.981	2.06	6	15	1	0	0
22	Isoamylamine	87.17		1.4089	0.751	96	18	10.6	116.07	0.544	47.46	1.322		6	13	1	0	0
23	Isobutylamine	73.14	-85	1.397	0.736	67.5	-20	10.42	99.38	0.539	39.45	0.793	0.73	4	11	1	0	0
24	Methylamine	31.06	-93	1.3740	1.08	-6 3/760	-32	10.71	28.76	0.540	31.91	-0.664	-0.57	1	5	1	ő	0
25	1-Methylanine	87.17	-93	1.4029	0.736	-0.3/700	35	10.65	118 44	0.547	47.72	1 232	=0.57	5	13	1	ő	0
27	2-Methylbutylamine	87.17		1 4116	0.738	95.5	3	-	118.12	0.558	48.62	1 322		5	13	î	ŏ	ő
28	(S)-(-)-2-Methylbutylamine	87.17		1.4126	0.738	42.5/12	3	-	118.12	0.559	48.73	1.322		5	13	i	ö	ö
29	1-Methylheptylamine	129.25		1.4235	0.771	165	50		167.64	0.549	71.00	2.819		8	19	i	ö	ö
30	Neopentylamine	87.17		1.403	0.745	81.5/741	-13	9.85	117.01	0.541	47.15	1.192		5	13	1	0	0
31	Nonylamine	143.27		1.433	0.782	201	62	10.64	183.21	0.554	79.33	3.568		9	21	1	0	0
32	Octadecylamine	269.52	56					10.6				8.329		18	39	1	0	0
33	Octylamine	129.25	-3	1.429	0.782	176	62	10.65	165.28	0.549	70.91	3.039		8	19	1	0	0
34	tert -Octylamine	129.25		1.424	0.805	140	32	10.84	160.56	0.527	68.08	2.429		8	19	1	0	0
35	Pentadecylamine	227.44	37.5			300		10.61				6.742		15	33	1	0	0
36	Pentylamine (amylamine)	87.17	-50	1.411	0.752	104	4	10.63	115.92	0.547	47.64	1.452	1.49	5	13	1	0	0
37	Propylamine	59.11	-83	1.3885	0.719	48	-37	10.71	82.21	0.540	31.94	0.394	0.47	3	9	1	0	0
38	1-Tetradecylamine	213.41	41			162/15		10.62				6.213		14	31	1	0	0
39	Tridecylamine	199.38	31	1 4200	0.705	265	02	10.62	216.24	0.551	04.45	5.684		13	29	1	0	0
40	(B) () 2 Aming 1 hytered	20.14	10.5	1.4536	0.796	172	92	10.65	04.12	0.551	94.45	4.626		4	25	1	1	0
41	(#)-2-Amino-1-butanol	89.14	-2	1.4518	0.947	173	84		94.13	0.479	42.39	0.052		4	11	1	1	0
43	S-(+)-2-Amino-1-butanol	89.14	-2	1 4521	0.944	173	79		94.43	0.479	42.69	0.052		4	11	î	i	0
44	4-Amino-1-butanol	89.14		1 4610	0.967	206	107		92.18	0.477	42.50	-1.064		4	11	i	i	õ
45	2-(2-Aminoethoxy)ethanol	105.14		1.0480	1.048	221			100.32	0.046	4.82	-1.231		4	11	i	2	õ
46	(±)-2-Amino-3-methyl-1-butanol	103.17		1.4543	0.936	76/8	90		110.22	0.485	50.07	-0.058		5	13	1	1	0
47	S-(+)-2-Amino-3-methyl-1-butanol	103.17	31	1.4548	0.926	81/8	91		111.41	0.491	50.67	-0.058		5	13	1	1	0
48	2-Amino-2-methyl-1-propanol	89.14	26	1.4455	0.934	165	67		95.44	0.477	42.52	-0.587		4	11	1	1	0
49	DL-2-Amino-1-pentanol	103.17		1.4511	0.922	194.5	95		111.90	0.489	50.48	0.072		5	13	1	1	0
50	5-Amino-1-pentanol	103.17	36	1.4615	0.949	122/16	65		108.71	0.486	50.17	-0.535		5	13	1	1	0
51	(±)-3-Amino-1,2-propanediol	91.11		1.4920	1.175	264.5/739			77.54	0.419	38.15	-2.12		3	9	1	2	0
52	R-(-)-1-Amino-2-propanol	75.11	25	1.4482	0.954	160	73		78.73	0.470	35.29	-0.986	-0.96	3		1	1	0
53	DL-1-Amino-2-propanol	75.11	-2	1.4483	0.973	160	73		77.19	0.461	34.61	-0.986	-0.96	3	9	1	1	0
54	S-(+)-1-Amino-2-propanol	75.11	25	1.4437	0.954	160	76		78.73	0.465	34.93	-0.986	-0.96	3	9	1	1	0
55	(R)-(-)-2-Amino-1-propanoi	75.11		1.4495	0.965	174.5	83		70.65	0.466	34.97	-0.986		2	9	1	1	0
57	(S) (L) 2 Amino 1 proponol	75.11		1.4495	0.943	72 5/11	63		79.05	0.477	25.01	0.980		2	0	1	1	0
58	3-Amino-1-propanol	75.11	11	1.4498	0.905	187.5	79		76.49	0.469	35.26	-1 593	-1.12	3	0	1	1	0
59	Ethanolamine	61.08	10.5	1 454	1.012	170	93		60.36	0.449	27.40	-1 295	-1.31	2	7	î	i	ő
60	(B) () Lausingl	117.10	10.5	1 4 4 0 6	0.017	100/769	00		127.90	0.490	57.46	0.200	-1.51	6	15		÷	0
61	4-Aminobutyraldebyde dietbyl acetal	161.25		1 4275	0.933	196	62		172.83	0.458	73.88	0.104		8	19	1	2	ŏ
62	(+)-2-Amino-1-methoxypropane	89.14		1 4065	0.845	93/743	8		105 49	0.481	42.88	-0.363		4	11	î	ĩ	ő
63	3-Butoxypropylamine	131.22		1.4260	0.853	169.5/756	63		153.83	0.499	65.53	1.444		7	17	1	i	ö
64	3-Ethoxypropylamine	103.17		1.4178	0.861	137	32		119.83	0.485	50.06	-0.488		5	13	1	i	ö
65	Ethyl 3-aminobutyrate	131.18		1.4241	0.894	60.5/13	42		146.73	0.474	62.23	0.439		6	13	1	2	0
66	3-Isopropoxypropylamine	117.19		1.4195	0.845	78.5/85	39		138.69	0.496	58.18	-0.179		6	15	1	1	0
67	2-Methoxyethylamine	75.11		1.406	0.864	95	9		86.93	0.470	35.29	-0.672		3	9	1	1	0
68	3-Methoxypropylamine	89.14		1.4175	0.874	117.5/733	22		101.99	0.478	42.58	-1.017		4	11	1	1	0
69	1-Adamantanemethylamine	165.28		1.5137	0.933		92		177.15	0.551	91.00	3.173		11	19	1	0	3
70	(Aminomethyl)cyclopropane	71.12		1.4340	0.820	86/758	-30		86.73	0.529	37.64	0.309		4	9	1	0	1

Example, PCA (known classes)

Scores summarizes the variation between molecules in the data table based on the included variables. From scores we can now chose molecules suitable for synthesis and analysis. (D-optimal choice, Multivariate design)

Example, PCA (spectroscopic data)

NIR spectra for 17 wood samples from three different species (spruce, pine, birch).

Each wavelength in the spectrum becomes a variable (1050 variables)

Strong correlation between variables (wavelengths)

Example, PCA (spectroscopic data)

"scores"

"loadings"

Scores show that NIR spectra contain information that can be used to distinguish between the three species. Three evident classes!

PCA of NIR spectra

From 1050 to 2 dimensions (clear class information)

Loading (p_1) plotted against variable number. gives a loading spectrum that can be compared to the original spectra.

Separation in 1st PC is due to differences in absorption for early wavelengths.

Conclusion

• Multivariate data

- How are they generated
- Properties
- Definition of problems (Overview, Classification, Regression)
- Methods

-Univariate

-Multivariate (PCA, PCR, PLS, PLS-DA)

- Latent variables
- Projections
- PCA
- Basic theory
- Model (scores, loadings, residuals)
- Interpretation (scores, loadings)
- Examples