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Multivariate data analysis (MVA) - Classification

Introduction

Methods
-SIMCA
-PLS-DA

Example
- Archaeologi (detail)
- Coronary Heart Disease (diagnosis)
- Human exercise study(GC/MS)

Conclusions
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• Classification exists within all areas of society

• Different classes - different properties – different applications

E.g. Different classes of molecules – suitable for different medical drugs 

O

(26)

O

(33)

• We need methods for detection of classes and for defining 
class identity for unknown samples. 

Classification 
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• SIMCA (Soft Independent Modelling of Class Analogy)

- PCA of the whole data matrix (overview) gives information about
classes, trends, outliers.

- PCA model for each separate class of samples.

- Cross validation (CV) decides number of components.

- Prediction of unknown samples – Do they belong to a class or not ?

- Class borders in scores and DModX.

Classification - methods 
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• PLS - DA (PLS - Discriminant Analysis)

- If PCA doesn’t give satisfactory separation between classes.

- PLS - DA is based on PLS against a “dummy” matrix for separation.
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Classification - methods 
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PCA Projection of maximum variation in X
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Classification - methods 
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PCA, PLS - Classification
Example: Archeology
• Classification of archaeologly interesting samples

– Previously done by univariate analysis
– Now multivariate approach.

• 22 samples collected from a archaeology site ouside Mjölby, Sweden

• The samples were characterised by 18 variables, from ICP-AES and test 
of two concentration pre-treatments for (Fe, Cu, P, Mn, V, Co, Zn, Cr and
Ca). This is of interest since untouched soil compared to occupied soiled
have got different patterns of trace elements.

• The 22 samples were collected from three different sites in the area. F, S, C

F: Garbage tip, S: Occupation site, C: Control (untouched soil)   
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Data table
Two pre-treatments of samples prior to ICP-AES: Total Dissolution(TD) and Nitric Acid(NA)

9 interesting elements (Fe, Cu, P, Mn, V, Co, Zn, Cr and Ca).
Gives a total of 18 variables.
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PCA – Whole data matrix (overview)

• Cross validation gives two significant components

• Two components significant according to eigenvalue (>2)

• R2 = 0.93, Q2 = O.90
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Interpretation of “scores” and “loadings”

Class separation can be seen
in the ‘scores’. 

Explanation can be found in “loadings”
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DModX

DModX doesn’t reveal any extreme outliers.
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Prediction of test samples

Prediction of three test samples (circled), one from each class, show that our total
PCA model can provide information about class discrimination.
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DModX test samples

Non of the test samples (circled) show signs of deviating in DModX
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SIMCA - One PCA model for each class 

By fitting a PCA-modell for each class confidence limits can be calculated for each
single class which will lead more reliable predictions of class identity for new samples..
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PCA - Class F

• Cross validation gives three significant components

• R2 = 0.97, Q2 = O.71

• Since the model will be used for prediction of class identity for new samples
we leave it to the cross validation to decide on the relevant number of components. 
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“Scores” - Class F

The spread of observations in all three components can be studied in “scores” (t1/t2, t1/t3). 
The class seem to be homogenous i.e. no outliers or groups within the class.
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DModX - Class F

Non of the samples show any signs of deviating in DmodX.
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Prediction of test samples - Class F

Non of the test samples (circled) is predicted outside the limits for class F. The sample belonging
to class F is predicted in the center of the class, while the samples belonging to class S and C
are predicted further away from the observations in class F.

Due to the large spread between the samples in class F the confidence limits become less tight..  
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C

S

F

The sample belonging to class C deviate somewhat in DModX, although not severe!
The sample belonging to class S does not deviate in DModX.

DModX predictions - Class F
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PCA - Class S

• Cross validation gives two significant components

• R2 = 0.91, Q2 = O.65

• Since the model will be used for prediction of class identity for new samples
we leave it to the cross validation to decide on the relevant number of components. 

. 
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“Scores”, DModX - Class S

A homogenous group with
little spread in scores.
No “outliers”!

No sample shows deviation 
in DModX!
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Predictions for the test samples (circled)
Show that the samples not belonging to 
class S are predicted outside the limits for 
class S. The sample belonging to class S
is predicted well within the class borders.

The test samplesbelonging to class F and C 
show large deviations in DModX. 

We can clearly distinguish them from class S.
Just as clearly we can also say that the third 
test sample belongs to class S.

C

S

F

Prediction of test samples - Class S
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PCA - Class C

• Cross validation gives one significant component.

• R2 = 0.80, Q2 = O.73

• Since the model will be used for prediction of class identity for new samples
we leave it to the cross validation to decide on the relevant number of components. 
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“Scores”, DModX - Class C

A homogenous group with
some spread in scores.
No “outliers”!

Non of the samples show 
deviation in DModX!
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Prediction of test samples - Class C

Predictions of the test samples (circled)
show that the samples not belonging to 
class C are predicted within the class limits
for class C. The sample belonging to class S 
is predicted in the center of the class.

The test samples belonging to class F and S 
do deviate in the predicted DModX. 

Hence we can distinguish them from class C.
We can also, with high certainty, say that the
third sample belongs to klass C.

C

S

F
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Prediction of test samples - Cooman’s Plot

In the Cooman’s plot the distance to a model (DModX) is plotted against the the distance (DModX) to a second model.
In this case DModX_classC against DModX_classF. In the plot the samples belonging to klassC have got a small 
distance to classC (0-2) while the distance to classF varies from 3 to 11. Samples belonging to classF show small 
distance to classF (0-2) while the distance to classC varies between 5 and 12. Samples belonging to class S are mainly
located outside the confidence limits for the two other classes. The test samples (circled) are all predicted into the 
right class

Distance (DModX) to
PCA-model for classC
for sample in square. 
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PLS-DA (three classes)

• Cross validation gives three significan components

• R2X = 0.96, R2Y = 0.8, Q2 = O.57

• Since the model will be used for prediction of class identity for new samples
we leave it to the cross validation to decide on the relevant number of components.
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“Scores”, DModX - PLS-DA

“Scores” (t1/t2) shows that the classes are 
separated in the first component

DModX show tha one sample from class C
is deviating in DModX. (Keep an eye on this
sample!)
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YS

YF

YC

Interpretation of PLS “loadings” (wc1/wc2)

The PLS loadings gives us possibilities to interpret which variables that are correlated 
(x/x, y/y, x/y).
E.g. YF positively correlated to circled x-variables. Circled x-variables positively 
correlated to eachother i.e. are describing the same variation. 

Controll (C) have got high levels 
Cr, Fe, V and Co and low levels 
of Mn, Cu, Zn and Ca.
Garbage site (F) has got the 
opposite pattern. Occupation site 
(S) is found in between the two 
extremes in component 1. 
The two pre-treatments f _NA 
and _TA are providing the same 
information.
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Prediction of test samples - Class F

Samples belonging to class F  are predicted close to 1. Samples not belonging to class F 
are predicted close to 0. (according to “dummy” Y-matrix). 
Test samples (circled). Test sample belonging to F is predicted s F.
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Samples belonging to class S are predicted close to 1. Samples not belonging to class S 
are predicted close to 0. (acoording to “dummy” Y-matrix). 
Test samples (circled). Test sample belonging to S is predicted as S.
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Prediction of test samples - Class S
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Prediction of test samples - Class C

Samples belonging to class C are predicted close to 1. Samples not belonging to class C 
are predicted close to 0. (acoording to “dummy” Y-matrix). 
Test samples (circled). Test sample belonging to C is predicted as C.
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Prediction of test samples - in “scores”

Test samples are well  predicted into respective class using PLS-DA
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Prediction of test samples - table
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Example – Coronary Heart Disease (CHD)

CHD is a major cause of mortality and morbidity in 
developed countries

Many risk factors for CHD have been identified from 
epidemiological studies

The full range of risk factors comprise insufficient 
density of data to accurately discriminate CHD on an 
individual basis

Firm diagnosis of CHD needs angiography
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Metabonomic Studies of CHD
Angiography is a x-ray investigation of the hearts artheries.

Angiogram

The pictures reveal severity of clogging of the artheries (number 
of vessels and grade). These cloggings are the cause of CHD.

Severe cases of clogging leads to heart attacks if not ”by pass”
surgery is carried out (serious surgical intervention).

Could NMR of a simple blood test be indicative of CHD and
replace angiography as the diagnostic standard in the clinic?
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CHD: Study details

Serum samples were collected from 
patients with normal coronary arteries 
(NCA; n = 30) and triple vessel disease 
(TVD; n = 36)

1D 1H NMR spectra were recorded

Chemometrics (PCA, PLS-DA) were 
applied to NMR spectral data.
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Coronary Heart Disease: PCA
Clear separation between 

NCA and TVD
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= NCA

= TVD

Coronary Heart Disease: PLS-DA

= Test samples

Analysis of blood samples 
Using NMR+ MVA

Might be a potential 
Alternative to ANGIOGRAFI

for diagnosis of CHD.
Other diseases? ALS, Alzheimers, 

Parkinson, Prostate cancer, .....



NUTRITION IMPACT 
FOLLOWING EXERCISE



PRE                                                                                       +0          +15       +30                     +60                            +90 

90 min RECOVERY

A. LOW CARBOHYDRATE-PROTEIN 
(1g CHO/kg + 0.5g protein/kg)

B. WATER                                                   
(tap water)

C. HIGH CARBOHYDRATE                   
(1.5g CHO/kg)

D. LOW CARBOHYDRATE                     
(1g CHO/kg)

24 healthy male subject

Age: 25.7 y.o
Weight: 77.4 kg
VO2max: 59.1 ml O2/kg/min

90 min EXERCISE

Workload 
(percent VO2peak)

2 min, 40%
6 min, 60%
2 min, 85%

x 9 = 90 minutes



GC-TOF/MS

SERUM SAMPLES

H-MCR (2,3)

MVA

IDENTIFICATION

BIOLOGICAL 
EVALUATION
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ACUTE EXERCISE RESPONSE
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IMPACT OF NUTRITION 
INTAKE AFTER EXERCISE



• 218 metabolites from GC/MS analysis was used to 
describe the samples.

• PLS-DA was used to reveal macronutrient related 
effects in the recovery phase

SAMPLES INCLUDED IN MODELLING

DATA

MODELLING

PRE (4) +0       +15       +30             +60                    +90 

EXERCISE NUTRITION RECOVERY

(4) Pohjanen E, et al . Journal of Proteome Research 2007, 6, (6), 2113-20.



WATER
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Num of components: 3P+5O
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PLS-DA SCORES (CROSS-VALIDATED)
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FITNESS STATUS



tC
V[
1]
PS

Num (Subject)

Num of components: 1P+1O
R2X: 0.228
R2Y: 0.905
Q2: 0.741

MODEL
Top and bottom five VO2peak
Recovery samples ingesting water

PREDICTION
Subjects with low fitness level 
ingesting low carbohydrate‐protein 
beveragePre 0 15 30 60 90

Average*
95% confidence interval 
Deviating subject

Insulin concentration 
when ingesting LCHO‐P
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High fitness level
68.2±2.9mL kg‐1min ‐1

Low fitness level
49.4±6.4mL kg‐1min ‐1



Markers for pro-anabolic effect

Individual nutrition modulation

Potential modelsystem for detecting 
insulin resistance?
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Summary - Classification

• Overview - detection of classes - PCA of the data table.

• Methods
- SIMCA (PCA of individual classes)

- PLS-DA (PLS against “dummy” Y, for maximum separation)

• Important to create good models for prediction of new samples.

• Clasification applications common within many areas.
- Archaeologi
- Diagnosis of Coronary Heart Disease (NMR)
- GC/MS human exercise and nutrition
- ...........


