
Lecture 3:
Programming in Perl: Introduction 2

David Sundell

PhD student
Umeå Plant Science Centre

Computational Life Science Cluster (CLiC)

1

This lecture

• Go through Lab 1
• Introduction to Perl 2

– hashes
– data structures
– subroutines and modules
– references

2

days

Mon Tue Wed Thu

$today

Mon

Scalar Array Hash

The three fundamental datatypes in Perl

• The sigills $,@,% must always be used.
• You can use different datatypes with the same name in the same program. 3

24

5

12 20 17

38 32 27

2

7
Andersson Pettersson

Jag
Simpson

Flint Vasa
Adams

Persson
Rheinfelt Bush

undef undef "Flint" undef undef "Vasa" undef "Adams" @owners_on_easy:

Easy St.

...
0 1 2 3 4 5 6 7

Arrays to look up addresses on the same street

4

Smith

Mack

Bush Flint

Vasa

Adams

14 Easy St. 42 Easy St.

15 Main St.

37 Main St. 32 Main St.

44 Main St.

What about
multiple streets?

5

Hashing
• Hash algorithms convert strings of any length into

reasonably small numbers; these numbers may be used
to index an array.

• The same string must always give the same index
(hash), but different strings can give the same hash.
This is called a collision and is handled by Perl in a way
that is invisible to you.

• Well-mixed hash-functions
 don't preserve the similarity
 of their input. Hash functions
 do not sort their input.

6

Perl hashes
• Hashes hold multiple, unordered pairs of keys and values. Each is a scalar.

• Hashes are written with a leading %, like: %favorite_color
• Hashes can be initialized by lists of keys and values using the "Big Arrow"

=> :
 my %favorite_color = (dave => 'green', jim => 'blue', fred => 'red');
• Hashes are indexed by their keys. Notice the curly brackets!
 my %fc = (dave => 'green', jim => 'blue', fred => 'red');
 print "Daves favorite color is $fc{dave}\n";
 Daves favorite color is green
• Each key in a hash must be unique! Reuse of a key causes reassignment:
 my %fc = (dave => 'green', dave => 'blue');
 print "Daves fave color is $fc{dave}\n";
 Daves favorite color is blue

7

Accessing Hashes and
Hash Slices

%days
You access hashes by key in curly brackets:
 my $today = $days{Mon};
 print "$today\n";
 Monday

 my $fave = “Fri”;
 my $favorite = days{$fave};
 print "$favorite\n";
 Friday

8

Iterating over hashes

• The keys function is the most common way to iterate
over a hash:

 my %fc = (dave => 'green', jim => 'blue', fred => 'red');
 foreach (keys %fc) {
 print "$_\'s favorite color is $fc{$_}\n";
 }
 jim's favorite color is blue
 dave's favorite color is green
 fred's favorite color is red

9

Iterating over hashes

• Sorting by keys
 my %fc = (dave => 'green', jim => 'blue', fred => 'red');
 foreach (sort keys %fc) {
 print "$_\'s favorite color is $fc{$_}\n";
 }
 dave's favorite color is green
 fred's favorite color is red
 jim's favorite color is blue
• Sorting by value:
 my %fc = (dave => 'green', jim => 'blue', fred => 'red');
 foreach (sort {$fc{$a} cmp $fc{$b}} keys %fc) {
 print "$_\'s favorite color is $fc{$_}\n";
 }
 jim's favorite color is blue
 dave's favorite color is green
 fred's favorite color is red

 10

Existence and definedness

Use exists to check for the presence of a key in a hash, not defined

my %age;
$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

@query = ("Toddler", "Unborn", "Phantasm", "Relic") ;
foreach my $thing (@query) {
 print "$thing: ";
 print "Exists " if exists $age{$thing};
 print "Defined " if defined $age{$thing};
 print "\n";
}
Toddler: Exists Defined
Unborn: Exists Defined
Phantasm: Exists
Relic:

11

Hashes as sets
• The uniqueness of keys in hashes make hashes useful models

of sets, and you can easily do set operations on hashes:

 my %hash1 = (a => 1, b => 1, d => 1);
 my %hash2 = (a => 1, c => 1, d => 1);

 my @common = ();
 foreach (keys %hash1) {
 push @common, $_ if exists $hash2{$_};
 }
 print "@common\n";
 a d
• Write pseudo-code that solves the same problem with arrays!
 12

Nested data structures

• Scalars, arrays and hashes are not enough! We want to nest
data structures to create e.g. tables (arrays of arrays).

• Perl cannot do arrays of arrays, however, it can do arrays of
references to arrays:

 my @players = ("Maldini","Giggs","Inzaghi");
 my $ref = \@players;
• References are scalars that point to an address in memory
 print "$ref\n";
 ARRAY(0x23affd4)

• Accessing values from references is called dereferencing.
 print "$ref->[2]\n";
 Inzaghi
 print "@$ref\n";
 Maldini Giggs Inzaghi

13

References

• This:
 my @players = ("Maldini","Giggs","Inzaghi");
 my $ref = \@players;
 is equivalent to this:
 my $ref = ["Maldini","Giggs","Inzaghi"];
• And this:
 my %players = (Maldini => 1, Giggs => 1, Inzaghi => 1);
 my $ref = \%players;
 is equivalent to this
 my $ref = {Maldini => 1, Giggs => 1, Inzaghi => 1};
• $ref is called an anonymous array or hash.

14

Reading a table from file
my @tab;

open (T, "tab.txt");
while (<T>) {
 chomp;
 my @row = split /\s/;
 push @tab, \@row;
}
close (T);

print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{$tab[2]}\n";
7.0
7.0
5.0 6.0 9.0

15

Reading a table from file
stored as a hash of arrays

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {
 chomp;
 my @row = split /\s/;
 my $player = shift @row;
 $ratings{$player} = \@row;
}
close (T);

print "$ratings{Maldini}->[1]\n";
print "$ratings{Maldini}[1]\n";
print "@{$ratings{Inzaghi}}\n";
7.0
7.0
5.0 6.0 9.0

16

Reading a table from file
stored as a hash of hashes

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {
 chomp;
 my @row = split /\s/;
 my $player = $row[0];
 for (my $i = 1; $i <@row; $i++) {
 $ratings{$player}{$teams[$i]} = $row[$i];
 }
}
close (T);

print "$ratings{Maldini}->{Juventus}\n";
print "$ratings{Maldini}{Juventus}\n";
print "Inzaghi\n";
foreach (keys %{$ratings{Inzaghi}}) {
 print " $_: $ratings{Inzaghi}{$_}\n";
}
6.5
6.5
Inzaghi
 Udinese: 9.0
 Juventus: 5.0
 Lecce: 6.0 17

Syntax summary

• Scalers:
 $player
• Arrays:
 @players, Element: $players[1]
• Hashes:
 %players, Value: $players{Maldini}

18

Syntax summary

• Array of arrays:
 @{$players[1]}, Element: $players[1][5]
• Hash of hashes:
 %{$players{Maldini}}, Value: $players{Maldini}{Udinese}
• Hash of arrays:
 @{$players{Maldini}}, Element: $players{Maldini}[5]
• Array of hashes:
 %{$players[1]}, Value: $players[1]{Udinese}

19

Subroutines and modules

• Modularizing code makes programming easier
– allows shorter and more easily maintainable code
– allows reuse of code

• Subroutines are functions
• Modules are collections of subroutines

20

Subroutines
my $m1 = mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m1\n";

my $m2 = mean(3.3, 1.8, 1.9, 4.5, 10);
print "$m2\n";

sub mean {

 my @vector = @_;

 my $sum = 0;
 foreach (@vector) {
 $sum += $_;
 }
 my $mean = $sum/@vector;

 return $mean;
}
3.12
4.3

• The default array @_ has
a similar function and
use as the default scalar
$_, but for subroutines

• return returns a scalar or
an array

21

Subroutine

Pass by value
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

 my @vector = @{$_[0]};
 my $n = $_[1];

 foreach (@vector) {
 $_ *= $n;
 }
}
1 4 3 8 9

Pass by reference
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

 my $vector = $_[0];
 my $n = $_[1];

 foreach (@$vector) {
 $_ *= $n;
 }
}
2 8 6 16 18

22

Modules
Module
(file name: Statistics.pm)
package Statistics;

sub mean {

 my @vector = @_;

 my $sum = 0;
 foreach (@vector) {
 $sum += $_;
 }
 my $mean = $sum/@vector;

 return $mean;
}

1;

Program
use strict;
use warnings;

use Statistics;

my $m = Statistics::mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m\n";
3.12

23

Acknowledgements

• Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

24

	Lecture 3: �Programming in Perl: Introduction 2
	This lecture
	The three fundamental datatypes in Perl
	Arrays to look up addresses on the same street
	What about multiple streets?
	Hashing
	Perl hashes
	Accessing Hashes and�Hash Slices
	Iterating over hashes
	Iterating over hashes
	Existence and definedness
	Hashes as sets
	Nested data structures
	References
	Reading a table from file
	Reading a table from file�stored as a hash of arrays
	Reading a table from file�stored as a hash of hashes
	Syntax summary
	Syntax summary
	Subroutines and modules
	Subroutines
	Subroutine
	Modules
	Acknowledgements

