Lecture 3:
Programming in Perl: Introduction 2

David Sundell

PhD student

Umea Plant Science Centre
Computational Life Science Cluster (CLiC)

This lecture

* Go through Lab 1

* Introduction to Perl 2
— hashes
— data structures
— subroutines and modules

— references

The three fundamental datatypes in Per]

%longday

$today

Mon

@days

Scalar

* 'The si9//s $,(@,% must always be used.

Mon

Tue

Wed

Thu

Friday

! | saturday

Array

Sunday

Monday

Wednesday

Tuesday

Hash

o
i

* You can use different datatypes with the same name in the same program.

Arrays to look up addresses on the same street

FIint

Vasa
5

Adams

Pettersson

| ‘ ndersson '
: 17 LO)®
s

AN

AN

AN

Easy St.
2l
: Persson
Bush Rheinfelt
@owners_on_easy: undef | undef | "Flint" | undef | undef | "Vasa" | undef ["Adams"| ...

0 1 2 3 4 5 6 7

15 Main St.

What about
-~ multiple streets?
ST
14 Easy St. - 42 Easy St.
37 Main St. 32 Main St.
44 Main St.

-] 5

Hashing

* Hash algorithms convert strings of any length into
reasonably small numbers; these numbers may be used
to index an array.

* The same string must always give the same index
(hash), but different strings can give the same hash.
This is called a co//ision and is handled by Perl in a way
that is invisible to you.

e Well-mixed hash-functions
Input Hash sum

don't preserve the similarity

Hash

function _"| DFCD3454 |

Fox

of their input. Hash functions

The red fox

Hash

P fUNs across —- :
do not sort their input. uns sore funotion —| B2EDB79E
The red fox
walks across | g 1880 » 46042841
the ice function 5

Perl hashes

Hashes hold multiple, unordered pairs of keys and values. Each is a scalar.

Hashes are written with a leading %, like: %favorite_color

Hashes can be initialized by lists of keys and values using the "Big Arrow"
=>:

my %favorite_color = (dave => 'green’, jim => 'blue', fred => "red');
Hashes are indexed by their keys. Notice the curly brackets!

my %fc = (dave => 'green’, jim => 'blue', fred => 'red');

print "Daves favorite color is $fc{dave}\n";

Daves favorite color 1s green

Each key in a hash must be unigue! Reuse of a key causes reassignment:
my %fc = (dave => 'green’, dave => 'blue');

print "Daves fave color is $fc{dave}\n";

Daves favorite color is blue

Accessing Hashes and
Hash Slices

You access hashes by key in curly brackets:
my $today = $days{Mon};
print "$today\n";
Monday

my $fave = “Fri”;

my $favorite = days{$fave};
print "$favorite\n";

Friday

Thursday

.........
Sral

Friday

Saturday

Monday

Sunday

Wednesday

Tuesday

s

Iterating over hashes

* The keys function is the most common way to iterate
over a hash:
my %fc = (dave => 'green’, jim => 'blue', fred => 'red");
foreach (keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";

jim's favorite color is blue

dave's favorite color is green

fred's favorite color is red

Iterating over hashes

Sorting by keys
my %fc = (dave => 'green’, jim => 'blue', fred => 'red");
foreach (sort keys %fc) {
print "$_\'s favorite color is $fc{$_}\n";
}
dave's favorite color is green
fred's favorite color is red
jim's favorite color is blue

Sorting by value:
my %fc = (dave => 'green’, jim => 'blue', fred => 'red");
foreach (sort {$fc{$a} cmp $fc{$b}} keys %fc) {
print "$_\'s favorite color is $fc{$_}\n";
}
jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

10

Existence and definedness

Use exists to check for the presence of a key in a hash, not defined

my %oage;

$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

@query = ("Toddlet", "Unborn", "Phantasm", "Relic") ;

foreach my $thing (@query) {
print "$thing: ";
print "Exists " if exists $age {$thing};
print "Defined " if defined $age {$thing};
print "\n";

j

Toddler: Exists Defined

Unborn: Exists Defined

Phantasm: Exists

Relic:

11

Hashes as sets

* The uniqueness of keys in hashes make hashes useful models
of sets, and you can easily do set operations on hashes:

my %hashl = (a=>1,b=>1,d =>1);
my %hash2 = (a=>1,c=>1,d => 1);

my (@common = ();
foreach (keys %hash1) {
push @common, $_ if exists $hash2{$_};

h

print "(@common\n";
ad

* Write pseudo-code that solves the same problem with arrays!

12

Nested data structures

Scalars, arrays and hashes are not enough! We want to nest
data structures to create e.g. tables (arrays of arrays).

Perl cannot do arrays of arrays, however, it can do arrays of
references to arrays:

my @players = ("Maldini","Giggs","Inzaghi");

my $ref = \@players;

References are scalars that point to an address in memory
print "$ref\n";

ARRAY (0x23affd4)

Accessing values from references is called dereferencing.

print "$ref->[2]\n";

Inzaghi

print "@$ref\n";
Maldini Giggs Inzaghi

13

References

* This:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \@players;
is equivalent to this:
my $ref = ["Maldini","Giggs","Inzaghi"];
* And this:
my Yoplayers = (Maldini => 1, Giggs => 1, Inzaghi => 1);
my $ref = \%players;
is equivalent to this
my $ref = {Maldini => 1, Giggs => 1, Inzaghi => 1};
* Jref is called an anonymous array or hash.

14

Reading a table from file

my (@tab;

open (T, "tab.txt");

while (<T>) {
chomp;
my (@row = split /\s/;
push @tab, \@row;

;
close (T);

print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{$tab[2]} \n";
70 For Help, press F1
7.0

5.0 6.0 9.0

Reading a table from file
stored as a hash of arrays

my %oratings;

open (T, "tab.txt");

my @teams = split /\s/, readline *T;

while (<T>) {
chomp;
my @row = split /\s/;
my $player = shift @row;
$ratings {$player} = \@row;
b
close (T);

print "$ratings {Maldini}->[1]\n";
print "$ratings {Maldini}[1]\n";
print "@ {$ratings {Inzaghi} } \n";
7.0

7.0

5.006.09.0

""" tab.txt - WordPad I =

File Edit Yiew [nsert Format
Help

Nl SR # aﬁa

g-|-1-|-2-|-3-|-4-|-5-|

|Juventus Lecce Udinese
Maldini 6.5 7.0 8.5
Pato 6.5 7.0 6.0
Inzaghi 5.0 6.0 5.0
Kaka 4.5 5.5 6.5

For Help, press F1

16

Reading a table from file
stored as a hash of hashes

my %oratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {
chomp;
my @row = split /\s/;
my $player = $row[0];
for (my $i = 1; $i <@row; $i++) {
$ratings {$player} {$teams[$i]} = $row[$i];

}
close (T);

print "$ratings {Maldini}-> {Juventus}\n";
print "$ratings {Maldini} {Juventus}\n";
print "Inzaghi\n";
foreach (keys % {$ratings {Inzaghi}}) {
print " $_: $ratings {Inzaghi} {$_}\n";

}
6.5
6.5
Inzaghi

Udinese: 9.0

Juventus: 5.0

Lecce: 6.0

File Edit Yiew [nsert Format
Help

Nl SR # aﬁa

g-|-1-|-2-|-3-|-4-|-5-|

|Juventus Lecce Udinese
Maldini 6.5 7.0 8.5
Pato 6.5 7.0 6.0
Inzaghi 5.0 6.0 5.0
Kaka 4.5 5.5 6.5

For Help, press F1

17

Syntax summary

* Scalers:
Pplayer
* Arrays:
(@players, Element: $players|1]
* Hashes:
%players, Value: $players{Maldini}

18

Syntax summary

Array of arrays:

@{$players[1]}, Element: $players[1][5]

Hash of hashes:

% {$players{Maldini} }, Value: $players{Maldini} {Udinese}
Hash of arrays:

@{$players{Maldini} }, Element: $players{Maldini} [5]
Array of hashes:

% {$players[1]}, Value: $players[1]{Udinese}

19

Subroutines and modules

* Modularizing code makes programming easter
— allows shorter and more easily maintainable code

— allows reuse of code
e Subroutines are functions

e Modules are collections of subroutines

20

my $m1 = mean(1.2, 1.5, 1.7, 4.5, 6.7);

print "$m1\n";

my $m2 = mean(3.3, 1.8, 1.9, 4.5, 10);
print "$m2\n";

sub mean {

my @vector = @_;

my $sum = 0;
foreach (@vector) {
$sum +=$_;

}

my $mean = $sum/@vector;
return $mean;

3.12
4.3

Subroutines

* The default array @_ has
a similar function and
use as the default scalar
$, but for subroutines

°* return returns a scalar or
an array

21

Pass by value
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my @vector = @{$_[0]};

my $n = $_[1];

foreach (@vector) {
$_*= 3n;
b

14389

Subroutine

Pass by reference
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my $vector = $_[0];
my $n = $_[1];

foreach (@$vector) {
$_ %= $n;
b
b
2861618

22

Modules

Module
(file name: Statistics.pm) Pr ogram

package Statistics; use strict;

use warnings;
sub mean { &5

my @vector = (@_; use Statistics;
my $sum = 0; B o
foreach (@vector) § my $m = Statistics:mean(1.2, 1.5, 1.7, 4.5, 6.7);

$sum +=$_; print "$m\n";
; 3.12

my $mean = $sum/@vectot;

return $mean;

23

Acknowledgements

e Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

24

	Lecture 3: �Programming in Perl: Introduction 2
	This lecture
	The three fundamental datatypes in Perl
	Arrays to look up addresses on the same street
	What about multiple streets?
	Hashing
	Perl hashes
	Accessing Hashes and�Hash Slices
	Iterating over hashes
	Iterating over hashes
	Existence and definedness
	Hashes as sets
	Nested data structures
	References
	Reading a table from file
	Reading a table from file�stored as a hash of arrays
	Reading a table from file�stored as a hash of hashes
	Syntax summary
	Syntax summary
	Subroutines and modules
	Subroutines
	Subroutine
	Modules
	Acknowledgements

