Lecture 2:
Programming in Perl: Introduction 1

Torgeir R. Hvidsten

Professor
Norwegian University of Life Sciences

Guest lecturer
Umea Plant Science Centre
Computational Life Science Cluster (CLiC)

This lecture

* Introduction to Perl 1
— basic expressions
— scalars
— arrays
— loops
— conditions

— file handling

What is Perl ?

 Perl was created by Larry Wall

= Practical =xtraction and ~eport | anguage
 Perl is an Open Source project

 Perl is a cross-platform programming language

Why Perl

Perl 1s a very popular programming language
Perl allows a rapid development cycle
Perl has strong text manipulation capabilities

Petl can easily call other programs

Existing Perl modules exists for nearly everything

— http://www.bioperl.org

— http://www.cpan.org/ (Comprehensive Perl Archive
Network)

http://www.bioperl.org/
http://www.cpan.org/

ActivePerl

& Perl Package Manager

File Edit View Action Help

@ E% . | 0 bioperl

@ Package Name * | Area | Installed | Available | Abstract

@ Bundle-BioPerl-Run 1.5.2_100 Bundle of prerequisites for bioperl-run

@ Bundle-BioPerl-... 1.5.2_100 Bundle of pre-requisites for bioperl-netwark

@ Bundle-BioPerl-Db 1.5.2_100 Bundle of prerequisites for bioperl-db

@ Bundle-BioPer|-Core 1.5.2_100 Bundle of prerequisites for bioper

@ Bundle-BioPer|-Core 1.5.9_ 4 Bundle of pre-requisites for BioPerl

@ Bundle-BioPerl 218 A bundle to install external CPAN modules used by BioPerl 1.5.2
@ bioperl-run 1.5.2_100 bioper|-run - wrapper toalkit

@ bioperl-netwark 1.5.2_100 bioperl-network - package for biological networks

@ bioperl-db 1.5.2_100 bioper|-db - package for biological databaszes

(4 bioperl 1,5.2_100 Bicinformatics Toalkit

Bioinformatics Toolkit

@ Bio-mGen 1.03 a fast and simple gene loading, helping automate BioPerl processes.

]
Status | Details

BioPerl
Bioinformatics Toolkit
Version: 1.59 4
Released: 2009-1-21
Author: BioPerl Team <bioper|d @bioperl.org>
CPAN: http: ffeearch. cpan.org/dist BioPerl-1.5.9 4/

10781 packages, 11 listed | 88 installed, 0 toinstall, 0 to remove | Install Area: site

Open Perl IDE

&= Open Perl IDE <testpl> - [C:\Users\Torgeir\WORK\Activities\Teaching'LanguagesAlgorithms\Labs\test.pl] |E@Iéj
E File Edit Search Project Run Window Help
Ol= [i= & w» =B O
Desktop: ~| | pelGdb.pl test.pl]
k| 1|mse Bio::Seq; *
Wariables I Breakpoinls] Modules] 2|use Bio::S5eql0;
Mame < Type | W 3
4| # 8 Segi 102 object of some DNA
S|my $seqg = Bio::Seg-»new(-id =»> 'testseqg’', -seq =»
&
T|# some d 1s a it
g print "seqg i= ", &seg->length, " basesz lo sl
I S|print "re =eq is ", Sseq->»revcom-rseq, "\n":
2 |lmy Sout = Bio::S5eglO->new , —format =» 'Fasta'):
l 13 $out->write_seq($seq);

= Console l Errar Dutputl CaIIStackl

Start parameter.

Our first Perl program

use strict; “use strict" makes it harder
use warnings; to write bad software

. 2 : 29
print "Hello world!\n"; use warnings” makes Perl

complain at a huge variety
of things that are almost
always sources of bugs in
your programs

Hello world!

”\n” prints a new line

Perl scalars

Perl variables that hold single values are called Scaars.

Scalars hold values of many different types such as strings, characters, floats,
integers, and references

Scalars are written with a leading 9, like: $sum

Scalars, as all variables, are declared with my, like my $sum
Perl is not a typed language: scalars can be strings, numbers, etc.

You can reassign values of different types to a scalar:

my $b = 42; §b = "forty-two"; print "$b\n";

forty-two

Perl will convert between strings and numbers for you:

my $a = "42" + §; print "$a\n";

50

my $a = "Perl" + 8; print "$a\n";

Argument "Perl" isn't numeric in addition (+) at test.pl line 4.

8

Perl scalars: some numerical operators

$v = 1+4; # addition

$v = 5-4; # subtraction
v = 3%4; # multiplication
$v =7/8; # division

v = 2KK8; # power

v = sqrt(4); # square root

Everything after ”#” 1s not
executed

H%5 =%+ 1;
HS=9%-1;
H$1=9%i+ 5;
H$=%/5;

The three fundamental datatypes in Per]

%longday

$today

Mon

@days

Scalar

* 'The si9//s $,(@,% must always be used.

Mon

Tue

Wed

Thu

Friday

! | saturday

Array

Sunday

Monday

Wednesday

Tuesday

Hash

o
i

* You can use different datatypes with the same name in the same program.

Perl Arrays

Arrays hold multiple ordered values.

Arrays are written with a leading (@, like: (@shopping_list
Arrays can be initialized by lists.

my @s = ("milk","eggs" "butter"); print "@s\n";

milk eggs butter

Arrays are indexed by integer. The first scalar in an array has
index 0 and no matter its size, the last scalar has index -1:

my @s = ("milk","eggs""butter"); print “§s[0] - $s[-1]\n";
milk - butter

The sizes of arrays are not declared; they grow and shrink as
necessary.

my @s = ("milk","eggs" "butter"); $s[4] = "beer"; print "@s\n";
Use of uninitialized value in join or string at test.pl line 4.

milk eggs butter beer

11

Perl Arrays

Arrays can be iterated over in foreach loops. You don't need to
know their size:

my @s = ("milk","eggs","butter");
foreach (@s) {
print "$_\n";
h
milk
eggs
butter

12

S_is known as the "default input and
pattern matching variable".

This is all equivalent:

my @s = ("milk","eggos" "butter"); my @s = ("milk","eggos" "butter");
foreach (@s) { foreach my $item (@s) {

print; print "$item\n";

print "\n"; }
h

my @s = ("milk","eggs""butter");
foreach (@s) {
print "$_\n";

b

13

Perl Arrays

An array 1n scalar context evaluates to its size. You can easily get the
index of the last item in an array.

my @s = ("milk","eggs","butter");
my $length = @s;

print "$length\n";

3

my @s = ("milk","eggs""butter");
my $last_index = $#s;

print "$last_index\n";

2

my @s = ("milk","eggs""butter");
print "$s[$#s]\n";
butter

14

Perl Arrays

Special commands add or remove items to the front or back of arrays.
push and pop add to the back, making a stack.

my @s = ("milk","eggs","butter");
push @s, "beer";

print "@s\n";

milk eggs butter beer

my @s = ("milk","eggs""butter");
pop @s;

print "@s\n";

milk eggs

my @s — ("mﬂk","eggs","butter");
my $last_item = pop @s;
print "$last_item\n";

butter

15

grow or shrink as needed

"fred"

"wilma"

@data

Perl arrays

my (@data = ("fred","wilma");

16

grow or shrink as needed

Perl arrays

"fred"

"wilma"

42

@data

my (@data = ("fred","wilma");

push (@data, 42;

17

Perl arrays

grow or shrink as needed

"fred"

"wilma"

42

undef

undef

"dino"

@data

my (@data = ("fred","wilma");

push (@data, 42;

$data[5] = "dino";

18

undef

* The value of all uninitialized scalars (and scalar elements of arrays and hashes)
has the special scalar value undef.

e undef evaluates as 0 when used as a number and "" when used as a string, which
is why you most often don't have to initialize variables explicitly before you use
them.

my $a; $a++; print "$a\n";

1

my @a = (1,2);

$a[3] = 23; print "@a\n";

Use of uninitialized value in join or string at test.pl line 4.
12 23

* Even after a scalar has been assigned, you can undefine them using the undef
operator.

$a = undef;
undef @a;

19

Arrays and lists in assighments

"fred" | "wilma" 42 undef | undef | "dino"

@data

You can initialize or set arrays or lists by arrays or lists:

my ($man,$wmn) = ($data[0],$data[1]); print "$man Fwmn\n";

fred wilma

my ($man,$wmn) = @data; print "$man $wmn\n";
fred wilma

@data = ("barney", "bambam"); print "@data\n";
barney bambam

my @mydata = @data; print "@data | @mydata\n";

barney bambam | barney bambam

You can swap elements without a temporary:
($data[1],$data[0]) = ($data0],$data[1]); print "$data0] $data[1]\n";

bambam barney

20

Array indexing

"fred" | "wilma" 42 undef | undef | "dino"
t @data t
Sdata[0] Sdata[5]
Sdata[S#data]

Sdata[-1]

21

Adding elements to array ends

shift @a >al0] >al-1] pop @a

> oo o0 .<
unshift @a, $b push @a, $b
unshift @a, @b push @a, @b

Loops: Iterating over Arrays

When we need the index:

for ($1 = 0; $§i < @data ; $i++) { # c-style
print "$data[$i]\n";

When we only need the element:

foreach (@data) { # petl-style
print "$_\n";

23

conditions

* if —else statements are used to test whether an expression is true or false
if ($a<0) {
print "$a is a negative number\n";
}elsif (Ja==10) {
print "$a is zero\n";
} else {

print "$a is a positive number\n";

;

e Use the function defined to test if a scalar has the value undef
if (defined $a) {
$a++ ;

b

equivalent to

$a++ if defined $a;

24

The rules of truth in Perl

Only Scalars can be True or False
undef is False

""" is False

0 1s False
0.0 1s False

"0" is False

Everything else is True (including "0.0" I)

25

$a == $b
$a 1= $b
$a eq $b
$a ne $b

o
o

Logical expression

compare numbers, true if $a equal to §b

compare numbers, true if $a is not equal to $b
compare strings, true if $a is equal to §b

compare strings, true if $a is not equal to $b

boolean, true if $a is 0, false if $a is 1

26

Controlling loops: next and last

next skip to the next iteration
my @a — (1 >2>5>6>7>O>;

my (@filtered;

foreach (@a) {
nextif § <5;
push @filtered, $_;

)

print "@filtered\n";

567

last ends the loop
my @a = (1,2,5,6,7,0);

my $found_zero = 0;
foreach (@a) {
if (5_==0) {
$found_zero = 1;

last;

b

print "$found_zero \n";
1

27

Sorting arrays

e Use the built in function sort

* The results may surprise youl
my (@words = ("c","b","a","B");
(@words = sort @words;
print "@words\n";

Babc

my (@numbers = (10,3,1,2,100);
(@numbers = sort (@numbers;
print "(@numbers\n";
11010023

28

sort

sort uses a default sorting operator cmp that sorts "ASCllIbetically", with capital
letters ranking over lower-case letters, and then numbers.

sort (@Wwords;
is equivalent to:

sort {$a cmp $b} @words;

cmp is a function that returns three values:
— -1if $ale $b
— 01if $aeq b
— +1if $a ge §b

where le, eq, and ge are string comparison operators.

$a and $b are special scalars that only have meaning inside the subroutine block
argument of sort. They are aliases to the members of the list being sorted.

29

sort {Sa <=> Sb} @numbers

e <=> (the "spaceship operator") is the numerical equivalent to the cmp operator:

—-1if $a < $b
— 0if $a==%b
— +1if §a > $b

* You can provide your own named or anonymous comparison subroutine to sort:
my (@numbers = (10,3,1,2,100);
(@numbers = sort {$a <=> §b} @numbers;
print "(@numbers\n";
12310100
(@numbers = sort {§b <=> $a} @numbers;
print "(@numbers\n";
100103 21

30

Syntax summary: scalars

* Declare: my $age;
* Set: Jage = 29; Jage = “twenty-nine”’;

* Access: print “$age\n”; twenty-nine

31

Syntax summary: arrays

Declare: my (@children;

Set all: (@children = (““Troy”,”Anea”);

Set element: $children[0] = “Troy Alexander”;

Access all: print “(@children\n”’; Troy Alexander Anea

Access element: print “$children[1]\n”’; Anea

32

Syntax summary: loops

foreach my $child (@children) {
print “$child\n”;

h

Troy Alexander

Anea

for (my $i = 0; $i < @children; $i++) {
print “$i: $children[$i]\n”’;

h

0: Troy Alexander

1: Anea

33

Syntax summary: conditions

foreach my $child (@children) {
if (length($child) > 4) {
print “$child\n”’;
h

h
Troy Alexander

34

Reading and writing to files

* open(A, ">sequence.txt') — creates a new file and opens it for
writing
* open(A, ">>sequence.txt") — opens an existing file for writing

* open(A, "sequence.txt') — opens an allready existing file for
reading

File Edit View Insert Format Help
e Sk # &~ =B B
g-I-1-ll-2-II-3-I-l4-I-5|-I-E-ll-?-II-E-I-.S-I-H]I-I-H-.I -12-I|-13-I-1.4-I$-15-I

hGCTTTA
open(A , ">sequence.txt");
print A “AGCTTTA\n";
close(A);

For Help, press F1 35 NUM

Reading and writing to files

open(A , ">>sequence.txt");

print A "AGCTTTA\n";
close(A);

open(A , "sequence.txt");
my $linel = readline *A;
my $line2 = readline *A;
close(A);
print "$linel | $line2\n";
AGCTTTA

| AGCTTTA

sequence.txt - WordPad

= [B [l

File Edit Yiew Insert Format Help

DS H S # 2B B

g'"1'."2".'3"'.4"'5."'5'.' SN TN R RS IS | E PRI I LS A

LECTTIR
TTTTTT

For Help, press F1

NUM

36

Reading files

my (@seqs;
open(A , "sequence.txt");
while (<A>) {
chomp;
push @seqs, $_;
h
close(A);
print ’(@seqs\n";
AGCTTTA AGCTTTA

chomp removes ”\n”” from
the end of the line if it

exists

37

Splitting strings: split

* You can split a string on any substrings that match a regular-
expression with:
— (@array = split /PATTERN/, $string;
— split /\s/, "do the twist"; # gives ("do","the","twist")

. Spht // "diCC men, # glVCS (ndn n " "C" "6" nn nmn "6")'
b b b b b b b
* Extremly useful when parsmg files:
my @genes sequences.txt - WordPad @@g
Open(A , SequenceS.tXt"); File Edit VYiew Insert Format Help
. ==
Whﬂe(<A>){ FEH S # @ @B B
g- T 2 03t A Bt Bt 71 B 1 G 110 ro110 1 1201 13- 1 14 1 18k 1)
chomp; AFG AGCTTTARA
. DST GTAAGCTTITA
my ($gene) - Spht /\s/; WRT RATTGCCTARRARD
push @genes, $gene;
close(A);
print ’@genes\n";
For Help, press F1 NUM

30

Extracting fragments: substr

my $string = "AC Milan";

my $fragment = substr $string, 3;
print "$fragment\n";

Milan

my $string = "F.C. Internazionale";
my $fragment = substr §string, 5, 5;
print "$fragment\n";

Inter

my $string = "F.C. Internazionale";
my $fragment = substr §string, -7, 4;
print "$fragment\n";

zion

39

@ARGV: command-line arguments

5| Open Perl IDE <testpl> - [CAUsers\TorgeirWORK\Activities\Teaching'LanguagesAlgorithms\Labs\test.pl] |E|E|i,|
Eile Edit Search Project Bun Window Help
O & & (i} BEOD
Deskmp:l _:J testI]

| 1 m=e strict: -

W ariables } Breakpuints] Mu:u:lules] use warnings;

Mame < Type | V..
my Egenes;
open(k , SARGV[0]):
while (<i>) {
chomp ;
my (Sgene) = split /\=/:
puzh Egenes, Sgene;

=] o nos Lh R
m

o m

10|}

11 | close(R);

12 [print "Egenesin";

13

14 -

= Console EnDrEIutput] CallStack

Start parameter:;

Ready

Acknowledgements

e Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

41

	Lecture 2: �Programming in Perl: Introduction 1
	This lecture
	What is Perl ?
	Why Perl
	ActivePerl
	Open Perl IDE
	Our first Perl program
	Perl scalars
	Perl scalars: some numerical operators
	The three fundamental datatypes in Perl
	Perl Arrays
	Perl Arrays
	$_ is known as the "default input and pattern matching variable".
	Perl Arrays
	Perl Arrays
	Perl arrays �grow or shrink as needed
	Perl arrays �grow or shrink as needed
	Perl arrays �grow or shrink as needed
	undef
	Arrays and lists in assignments
	Array indexing
	Adding elements to array ends
	Loops: Iterating over Arrays
	conditions
	The rules of truth in Perl	
	Logical expression
	Controlling loops: next and last
	Sorting arrays
	sort
	sort {$a <=> $b} @numbers
	Syntax summary: scalars
	Syntax summary: arrays
	Syntax summary: loops
	Syntax summary: conditions
	Reading and writing to files
	Reading and writing to files
	Reading files
	Splitting strings: split
	Extracting fragments: substr
	@ARGV: command-line arguments
	Acknowledgements

