
Lecture 2:
Programming in Perl: Introduction 1

Torgeir R. Hvidsten

Professor
Norwegian University of Life Sciences

Guest lecturer

Umeå Plant Science Centre
Computational Life Science Cluster (CLiC)

1

This lecture

• Introduction to Perl 1
– basic expressions
– scalars
– arrays
– loops
– conditions
– file handling

2

What is Perl ?

• Perl was created by Larry Wall

• Perl = Practical Extraction and Report Language

• Perl is an Open Source project

• Perl is a cross-platform programming language

3

Why Perl

• Perl is a very popular programming language
• Perl allows a rapid development cycle
• Perl has strong text manipulation capabilities
• Perl can easily call other programs

• Existing Perl modules exists for nearly everything

– http://www.bioperl.org
– http://www.cpan.org/ (Comprehensive Perl Archive

Network)

4

http://www.bioperl.org/
http://www.cpan.org/

ActivePerl

5

Open Perl IDE

6

Our first Perl program

use strict;
use warnings;

print "Hello world!\n";

Hello world!

“use strict" makes it harder
to write bad software

”use warnings” makes Perl
complain at a huge variety
of things that are almost
always sources of bugs in
your programs

”\n” prints a new line

7

Perl scalars
• Perl variables that hold single values are called Scalars.
• Scalars hold values of many different types such as strings, characters, floats,

integers, and references
• Scalars are written with a leading $, like: $sum
• Scalars, as all variables, are declared with my, like my $sum
• Perl is not a typed language: scalars can be strings, numbers, etc.

• You can reassign values of different types to a scalar:
 my $b = 42; $b = "forty-two"; print "$b\n";
 forty-two
• Perl will convert between strings and numbers for you:
 my $a = "42" + 8; print "$a\n";
 50
 my $a = "Perl" + 8; print "$a\n";
 Argument "Perl" isn't numeric in addition (+) at test.pl line 4.
 8

8

Perl scalars: some numerical operators

• $v = 1+4; # addition
• $v = 5-4; # subtraction
• $v = 3*4; # multiplication
• $v = 7/8; # division
• $v = 2**8; # power
• $v = sqrt(4); # square root

• Everything after ”#” is not

executed

• $i++; # $i = $i + 1;
• $i--; # $i = $i - 1;
• $i+= 5; # $i = $i + 5;
• $i/=5; # $i = $i / 5;

9

days

Mon Tue Wed Thu

$today

Mon

Scalar Array Hash

The three fundamental datatypes in Perl

• The sigills $,@,% must always be used.
• You can use different datatypes with the same name in the same program. 10

Perl Arrays
• Arrays hold multiple ordered values.

• Arrays are written with a leading @, like: @shopping_list
• Arrays can be initialized by lists.
 my @s = ("milk","eggs","butter"); print "@s\n";
 milk eggs butter
• Arrays are indexed by integer. The first scalar in an array has

index 0 and no matter its size, the last scalar has index -1:
 my @s = ("milk","eggs","butter"); print “$s[0] - $s[-1]\n";
 milk - butter
• The sizes of arrays are not declared; they grow and shrink as

necessary.
 my @s = ("milk","eggs","butter"); $s[4] = "beer"; print "@s\n";
 Use of uninitialized value in join or string at test.pl line 4.
 milk eggs butter beer

 11

Perl Arrays
• Arrays can be iterated over in foreach loops. You don't need to

know their size:
 my @s = ("milk","eggs","butter");
 foreach (@s) {
 print "$_\n";
 }
 milk
 eggs
 butter

12

$_ is known as the "default input and
pattern matching variable".

This is all equivalent:

my @s = ("milk","eggs","butter");
foreach (@s) {
 print;
 print "\n";
}

my @s = ("milk","eggs","butter");
foreach (@s) {
 print "$_\n";
}

my @s = ("milk","eggs","butter");
foreach my $item (@s) {
 print "$item\n";
}

13

Perl Arrays
An array in scalar context evaluates to its size. You can easily get the
index of the last item in an array.

 my @s = ("milk","eggs","butter");
 my $length = @s;
 print "$length\n";
 3

 my @s = ("milk","eggs","butter");
 my $last_index = $#s;
 print "$last_index\n";
 2

 my @s = ("milk","eggs","butter");
 print "$s[$#s]\n";
 butter

14

Perl Arrays
Special commands add or remove items to the front or back of arrays.
push and pop add to the back, making a stack.

 my @s = ("milk","eggs","butter");
 push @s, "beer";
 print "@s\n";
 milk eggs butter beer

 my @s = ("milk","eggs","butter");
 pop @s;
 print "@s\n";
 milk eggs

 my @s = ("milk","eggs","butter");
 my $last_item = pop @s;
 print "$last_item\n";
 butter

15

Perl arrays
grow or shrink as needed

my @data = ("fred","wilma");

"fred" "wilma"

@data

16

Perl arrays
grow or shrink as needed

my @data = ("fred","wilma");

push @data, 42;

"fred" "wilma" 42

@data

17

Perl arrays
grow or shrink as needed

"fred" "wilma" 42 undef undef "dino"

@data

my @data = ("fred","wilma");

push @data, 42;

$data[5] = "dino";

18

• The value of all uninitialized scalars (and scalar elements of arrays and hashes)
has the special scalar value undef.

• undef evaluates as 0 when used as a number and "" when used as a string, which
is why you most often don't have to initialize variables explicitly before you use
them.

 my $a; $a++; print "$a\n";
 1
 my @a = (1,2);
 $a[3] = 23; print "@a\n";
 Use of uninitialized value in join or string at test.pl line 4.
 1 2 23
• Even after a scalar has been assigned, you can undefine them using the undef

operator.

 $a = undef;
 undef @a;

undef

19

Arrays and lists in assignments

"fred" "wilma" 42 undef undef "dino"

@data

You can initialize or set arrays or lists by arrays or lists:
 my ($man,$wmn) = ($data[0],$data[1]); print "$man $wmn\n";
 fred wilma
 my ($man,$wmn) = @data; print "$man $wmn\n";
 fred wilma
 @data = ("barney", "bambam"); print "@data\n";
 barney bambam
 my @mydata = @data; print "@data | @mydata\n";
 barney bambam | barney bambam

You can swap elements without a temporary:
 ($data[1],$data[0]) = ($data[0],$data[1]); print "$data[0] $data[1]\n";
 bambam barney

 20

Array indexing

"fred" "wilma" 42 undef undef "dino"

@data
$data[0] $data[5]

$data[$#data]

$data[-1]

21

Adding elements to array ends

• • •

unshift @a, $b push @a, $b

shift @a pop @a

unshift @a, @b push @a, @b

$a[-1] $a[0]

22

Loops: Iterating over Arrays
When we need the index:

for ($i = 0; $i < @data ; $i++) { # c-style

print "$data[$i]\n";

}

When we only need the element:

foreach (@data) { # perl-style

print "$_\n";

}

23

• if – else statements are used to test whether an expression is true or false
 if ($a < 0) {
 print "$a is a negative number\n";
 } elsif ($a == 0) {
 print "$a is zero\n";
 } else {
 print "$a is a positive number\n";
 }
• Use the function defined to test if a scalar has the value undef
 if (defined $a) {
 $a++;
 }
 equivalent to
 $a++ if defined $a;

conditions

24

The rules of truth in Perl
• Only Scalars can be True or False
• undef is False
• "" is False
• 0 is False
• 0.0 is False
• "0" is False
• Everything else is True (including "0.0" !)

25

Logical expression

• $a == $b # compare numbers, true if $a equal to $b
• $a != $b # compare numbers, true if $a is not equal to $b
• $a eq $b # compare strings, true if $a is equal to $b
• $a ne $b # compare strings, true if $a is not equal to $b
• !$a # boolean, true if $a is 0, false if $a is 1

26

Controlling loops: next and last

next skip to the next iteration
my @a = (1,2,5,6,7,0);

my @filtered;
foreach (@a) {
 next if $_ < 5;
 push @filtered, $_;
}
print "@filtered\n";
5 6 7

last ends the loop
my @a = (1,2,5,6,7,0);

my $found_zero = 0;
foreach (@a) {
 if ($_ == 0) {
 $found_zero = 1;
 last;
 }
}
print "$found_zero \n";
1 27

Sorting arrays

• Use the built in function sort

• The results may surprise you!
my @words = ("c","b","a","B");
@words = sort @words;
print "@words\n";
B a b c

my @numbers = (10,3,1,2,100);
@numbers = sort @numbers;
print "@numbers\n";
1 10 100 2 3

28

• sort uses a default sorting operator cmp that sorts "ASCIIbetically", with capital
letters ranking over lower-case letters, and then numbers.

 sort @words;
 is equivalent to:
 sort {$a cmp $b} @words;
• cmp is a function that returns three values:

– -1 if $a le $b
– 0 if $a eq $b
– +1 if $a ge $b

• where le, eq, and ge are string comparison operators.
• $a and $b are special scalars that only have meaning inside the subroutine block

argument of sort. They are aliases to the members of the list being sorted.

sort

29

sort {$a <=> $b} @numbers

• <=> (the "spaceship operator") is the numerical equivalent to the cmp operator:
– -1 if $a < $b
– 0 if $a == $b
– +1 if $a > $b

• You can provide your own named or anonymous comparison subroutine to sort:

my @numbers = (10,3,1,2,100);
@numbers = sort {$a <=> $b} @numbers;
print "@numbers\n";
1 2 3 10 100
@numbers = sort {$b <=> $a} @numbers;
print "@numbers\n";
100 10 3 2 1

30

Syntax summary: scalars

• Declare: my $age;
• Set: $age = 29; $age = “twenty-nine”;
• Access: print “$age\n”; twenty-nine

31

Syntax summary: arrays

• Declare: my @children;
• Set all: @children = (“Troy”,”Anea”);
• Set element: $children[0] = “Troy Alexander”;
• Access all: print “@children\n”; Troy Alexander Anea
• Access element: print “$children[1]\n”; Anea

32

Syntax summary: loops

foreach my $child (@children) {
 print “$child\n”;
}
Troy Alexander
Anea

for (my $i = 0; $i < @children; $i++) {
 print “$i: $children[$i]\n”;
}
0: Troy Alexander
1: Anea

 33

Syntax summary: conditions

foreach my $child (@children) {
 if (length($child) > 4) {
 print “$child\n”;
 }
}
Troy Alexander

34

Reading and writing to files

• open(A, ">sequence.txt") – creates a new file and opens it for
writing

• open(A, ">>sequence.txt") – opens an existing file for writing
• open(A, "sequence.txt") – opens an allready existing file for

reading

open(A , ">sequence.txt");
print A “AGCTTTA\n";
close(A);

35

Reading and writing to files

open(A , ">>sequence.txt");
print A "AGCTTTA\n";
close(A);

open(A , "sequence.txt");
my $line1 = readline *A;
my $line2 = readline *A;
close(A);
print "$line1 | $line2\n";
AGCTTTA
 | AGCTTTA
 36

Reading files

my @seqs;
open(A , "sequence.txt");
while (<A>) {
 chomp;
 push @seqs, $_;
}
close(A);
print ”@seqs\n";
AGCTTTA AGCTTTA

chomp removes ”\n” from
the end of the line if it
exists

37

Splitting strings: split
• You can split a string on any substrings that match a regular-

expression with:
– @array = split /PATTERN/, $string;
– split /\s/, "do the twist"; # gives ("do","the","twist")
– split //, "dice me"; # gives ("d","i","c","e"," ","m","e");

• Extremly useful when parsing files:

my @genes;
open(A , "sequences.txt");
while (<A>) {
 chomp;
 my ($gene) = split /\s/;
 push @genes, $gene;
}
close(A);
print ”@genes\n";
AFG DST WRT

 38

Extracting fragments: substr

my $string = "AC Milan";
my $fragment = substr $string, 3;
print "$fragment\n";
Milan

my $string = "F.C. Internazionale";
my $fragment = substr $string, 5, 5;
print "$fragment\n";
Inter

my $string = "F.C. Internazionale";
my $fragment = substr $string, -7, 4;
print "$fragment\n";
zion

39

@ARGV: command-line arguments

40

Acknowledgements

• Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

41

	Lecture 2: �Programming in Perl: Introduction 1
	This lecture
	What is Perl ?
	Why Perl
	ActivePerl
	Open Perl IDE
	Our first Perl program
	Perl scalars
	Perl scalars: some numerical operators
	The three fundamental datatypes in Perl
	Perl Arrays
	Perl Arrays
	$_ is known as the "default input and pattern matching variable".
	Perl Arrays
	Perl Arrays
	Perl arrays �grow or shrink as needed
	Perl arrays �grow or shrink as needed
	Perl arrays �grow or shrink as needed
	undef
	Arrays and lists in assignments
	Array indexing
	Adding elements to array ends
	Loops: Iterating over Arrays
	conditions
	The rules of truth in Perl	
	Logical expression
	Controlling loops: next and last
	Sorting arrays
	sort
	sort {$a <=> $b} @numbers
	Syntax summary: scalars
	Syntax summary: arrays
	Syntax summary: loops
	Syntax summary: conditions
	Reading and writing to files
	Reading and writing to files
	Reading files
	Splitting strings: split
	Extracting fragments: substr
	@ARGV: command-line arguments
	Acknowledgements

