
E�cient memory�bounded search methods

Stuart Russell
�

Computer Science Division
University of California� Berkeley� CA ������ USA

Abstract� Memory�bounded algorithms such as
Korf�s IDA� and Chakrabarti et al�s MA� are designed
to overcome the impractical memory requirements of
heuristic search algorithms such as A� � It is shown
that IDA� is ine�cient when the heuristic function can
take on a large number of values� this is a consequence
of using too little memory� Two new algorithms are
developed� The �rst	 SMA�	 simpli�es and improves
upon MA�	 making the best use of all available mem�
ory� The second	 Iterative Expansion 
IE�	 is a simple
recursive algorithm that uses linear space and incurs
little overhead� Experiments indicate that both algo�
rithms perform well�

� Introduction

This paper adopts the standard framework of heuristic
search	 in which the object is to �nd a sequence of
operators leading from a given initial state to any goal
state� The search is guided by a heuristic function
h
n�	 which estimates the lowest cost of any path from
state n to a goal state� Although heuristic search is
a well�established area of research	 new developments
have great practical signi�cance	 both because of the
large number of applications and because search often
underlies the operation of more complex AI systems�
We will be principally concerned with �nding the

optimal solution sequence	 using heuristics that are
admissible� that is	 h
n� � h�
n� where h� represents
the exact distance to the nearest goal state�� With
admissible h	 the A� algorithm �
� is known to re�
turn optimal solutions� Furthermore	 A� examines the
minimum number of nodes necessary to do this	 up to
tie�breaks ��� 
see below for a simple proof��
Given these results	 and the existence of more e��

cient	 ��admissible algorithms that relax the optimal�
ity requirement	 one might imagine that this area of
research is more or less sewn up� Unfortunately	 A�
retains in memory all the nodes it has generated	 and
will run out of space long before it exhausts the pa�
tience of the user� 
A good �
�puzzle implementation

�Work supported by an NSF PYI Award� an SERC Vis�
iting Fellowship� and the Turing Institute� Glasgow� Fig�
ures by Ashwin�

�We will also enforcemonotonicity of h� which amounts
to satisfaction of the triangle inequality� Monotonicity can
be ensured for any admissible h by the application of path�
max� which compares the value of a state with those of its
ancestors�

can exhaust main memory on a ��MB workstation
in under ten minutes�� Recognizing this	 several re�
searchers have developed memory�bounded variants of
A�� The principal di�culties are �� ensuring optimal
solutions	 and �� avoiding the continual re�expansion
of nodes that have been visited before but necessarily
forgotten because of memory restrictions�
The Graph Traverser ���	 one of the earliest search

programs	 commits to an operator after searching
best��rst up to the memory limit� As with other
�staged search� algorithms	 optimality cannot be en�
sured because until the best path has been found the
optimality of the �rst step remains in doubt� IDA� ���	
one of the earliest admissible	 memory�bounded algo�
rithms	 uses space linear in the length of the solution�
The MA� algorithm ��� can utilize whatever memory
is available	 and thereby avoids some re�expansions�
The latter paper also describes several other memory�
bounded algorithms�
The next section discusses IDA� and MA� in detail�

Section � describes the SMA� algorithm	 which im�
proves on MA�� Section � describes IE	 a simple	 low�
overhead recursive algorithm that uses linear space
and is more e�cient than IDA�� Section 
 provides
performance data to support these claims�

� IDA� and MA�

IDA� was derived from the old idea of iterative deep�
ening� In ordinary depth��rst iterative deepening	
search proceeds by gradually increasing the depth
limit until a goal is found� IDA� takes advantage of
the admissibility of the heuristic function by limiting
the f �cost of the nodes examined by the depth��rst
search	 rather than the depth� The f �cost of a node is
given by f
n� � g
n� � h
n� where g
n� is the cost of
the path from the start node� The IDA� algorithm is
de�ned as follows 
S
n� denotes n�s successors��

Algorithm IDA��n��
limit� f�n��
do until success or limit unchanged

limit� DFS�n� limit��

Function DFS�n�limit��
if f�n� � limit return f�n��
if goal�n� then return with success
else return lowest value of DFS�s� limit� for s � S�n��

IDA� has much lower overhead than A�� further�
more	 in Korf�s experiments on the �
�puzzle	 the



Figure �� f�cost diagram for A	 and IDA	

number of nodes re�expanded was small enough to
make IDA� competitive with A� in terms of time� The
easiest way to understand the behaviour and complex�
ity of IDA� is to consider the state space statically	
with the nodes ordered by f �cost� Figure � shows some
idealized f �cost boundaries around the start node S�
In such f �cost diagrams	 all nodes between bound�
aries fi and fi�� have f
n� � fi��� Nodes inside the
f� boundary have the same f �cost as the start node�

�

A� operates by expanding all the nodes in each layer
before continuing to the next�� On the other hand	
IDA� starts again from scratch with f �cost limits in
the increasing sequence f�� f�� � � �� Each iteration goes
over the layers examined by the previous one	 plus one
new layer�
In the worst case	 every node in the state space has a

di�erent f �cost	 so that each layer contains exactly one
node� If A� examines k nodes to solve a problem	 then
IDA� will examine � � � � � � �� k	 i�e�	 O
k�� nodes�
When k is large 
for instance	 large enough that k
nodes cannot be stored in the memory available�	 the
slowdown compared to A� may be unacceptable� The
worst case does not arise in domains such as the ��
puzzle because the manhattan�distance heuristic takes
on only a small number of integer values	 and many
nodes have the same f �cost� Realistic optimization
problems such as Travelling Salesman or VLSI layout
would certainly cause worst�case behaviour because
of the continuous variables involved� In fact	 applying
an in�nitesimal random perturbation to the heuristic
values in the ��puzzle is su�cient to degrade IDA��s
performance drastically	 as we show below	 whereas
A��s performance is una�ected�
State spaces in which nodes have a wide variety of

�That such a diagram can be consistently drawn fol�
lows from the monotonicity property of admissible heuris�
tics with pathmax� which means that f �costs are non�
decreasing along any path�

�Hence we can see that A	 is optimally e
cient among
all admissible algorithms with the same information� if an
algorithm skips any node in an interior layer� it will fail to
return the optimal solution if that node happens to be on
the best path�

f �costs are di�cult to search because as the algorithm
extends the search frontier	 it will frequently change
its mind about which path is most promising� A� can
handle this because all paths are available to be ex�
tended if they become the most promising candidates�
bounded�memory algorithms will have di�culty be�
cause some previously�explored paths are necessarily
purged from memory and will have to be re�expanded�
IDA� is particularly vulnerable because it retains no
path information between iterations�
A simple meta�level argument suggests that a good

algorithm should retain as many nodes as possible	
and should prefer to retain the most promising ones�
This is because the purpose of retention is to increase
speed by avoiding re�expansion 
in general	 the pur�
pose of memory is to avoid recomputation as well as
to retain state�� If nodes are selected for expansion by
lowest f �cost	 then if f
n�� � f
n��	 n� must become
the most promising node before n� because until then
only nodes with f
n� � f
n�� are expanded� Hence
nodes with highest f �cost should be pruned �rst� Fur�
thermore	 when a node is pruned	 as much cost infor�
mation should be retained in its ancestors as possible	
consistent with the constraint that each node takes
constant space�
The MA� algorithm ��� embodies these principles

reasonably well� 
Unfortunately	 the algorithm is
too complicated to reproduce here	 so a sketch will
have to su�ce�� Like A�	 it maintains two sets of
nodes� CLOSED contains nodes all of whose succes�
sors are present in memory	 and OPEN contains all
other nodes in memory� Successors are generated from
the node in OPEN with lowest f �cost	 and added to
OPEN� When the number of nodes in OPEN and
CLOSED reaches some preset limit	 MA� begins to
prune the OPEN list by removing the leaf�node with
highest f �cost�� When a new successor is generated	
its f �cost is propagated back up the tree so that	
roughly speaking	 the f �cost of each internal node is
always the most informed bound derived from all its
examined descendants� 
Actually	 this is how SMA�
works� MA� uses a di�erent set of quantities for each
node	 to the same e�ect�� Thus	 for example	 if a node
n whose original f �cost is � is found to have succes�
sors all of whose f �costs are �	 then the f �cost of n
is revised to �	 representing the new lower bound on
solution paths through n� Although pruning the de�
scendants of n then loses information about which way
to go from n	 the retention of backed�up values means
that the algorithm still knows how worthwhile it is to
go anywhere from n�
MA� makes good use of available memory	 and

is able to solve selected �
�puzzles expanding fewer
nodes than IDA�� As soon as the memory limit is
reached	 MA� abandons the least promising part of
the space and reallocates memory to push forward

�This means that MA	� and SMA	� need to deal with
partially�expanded nodes and to generate successors one at
a time�



towards the goal� As time progresses	 the nodes in
memory will occupy a narrow band around the best
solution path�

� SMA�

The MA� algorithm can be improved in several ways�
The resulting algorithm	 called SMA�	 incorporates
the following improvements�

�� Because the backing up of f �costs means that
many nodes have the same f �cost	 and because
the algorithms need to select deepest and shal�
lowest leaves of lowest and highest f �cost	 SMA�
uses a binary tree of binary trees to store OPEN	
sorted by f and depth respectively� MA��s data
structures are less e�cient�

�� SMA� is easier to implement and understand
than MA�	 since it maintains just two f �cost
quantities for each node rather than four� Also	
SMA� backs up once per fully�expanded node	
rather than once per node generated�

�� When MA� begins pruning	 it continues until
only the current �principal variations� � nodes
with the best f �cost � remain� As argued above	
only the worst node should be pruned	 and only
when space is needed for a better one� SMA�
adds and prunes only one node at a time�

�� MA� loses information by not using pathmax
with the backed�up f �costs� This is the most cru�
cial improvement in SMA��

��� Algorithm description

Algorithm SMA��start��
put start on OPEN� USED � ��
loop

if empty�OPEN� return with failure�
best � deepest least�f �cost leaf in OPEN�
if goal�best� then return with success�
succ � next�successor�best��
f�succ�� max�f�best��g�succ� � h�succ���
if completed�best�� BACKUP �best��
if S�best� all in memory� remove best from OPEN�
USED � USED���
if USED � MAX then

delete shallowest� highest�f �cost node in OPEN�
remove it from its parent
s successor list�
insert its parent on OPEN if necessary�
USED � USED���

insert succ on OPEN�

Procedure BACKUP�n��
if n is completed and has a parent then

f�n�� least f �cost of all successors�
if f�n� changed� BACKUP �parent�n���

SMA� is called with the start node� A global vari�
able MAX is set to the maximum number of nodes
that can be accommodated	 and the variable USED

keeps track of how many nodes are currently in mem�
ory� Each node contains its g	 h and f �costs	 and the
minimum f �cost of its examined successors� it also re�
tains some information used by the successor function
to indicate the next successor to be generated� A suc�
cessor that has not been generated since its parent was
last generated is called unexamined� A node with no
unexamined successors is called completed�

��	 Properties

SMA� has the following properties�

Lemma � f�costs are maintained to give a correct
lower bound on the cost of solution paths through any
unexamined descendant of a node� The bounds are
stricter than those maintained by MA��

Lemma � SMA� always expands the node that has
the best lower bound on its unexamined descendants�

Theorem � SMA� is guaranteed to return an opti�
mal solution� provided MAX is at least as large as the
number of nodes on the optimal solution path�

Theorem � Except for its ability to generate sin�
gle successors� SMA� behaves identically to A� when
MAX is larger than the number of nodes generated by
A��

The complexity of SMA� is discussed brie�y in sec�
tion ��

��� Example

Figure � shows a typical tree� the left subtree has
been largely pruned away to make room for the more
promising right subtree	 but its f �cost information has
been backed up to its frontier ancestor C� If C is later
re�expanded	 pathmax will give F a value of 
	 as we
would hope� Unfortunately	 node I will get a value
of 
 although it was once known to have a value of ��
This form of information loss seems unavoidable given
the requirement of constant space per node�

� IE

IE is a simple recursive algorithm developed from an
idea in DTA� ���� There it was pointed out that
with an admissible heuristic	 the backed�up f �cost of
a child of the root can only increase	 and therefore
search should only be carried out under the current
best child	 until its cost exceeds the current second�
best child� Thus IE is called on a node with a bound
equal to the backed�up f �cost of the second�best path
from any ancestor of that node� 
The second�best�
value idea is also used in RBFS	 a similar algorithm
developed independently by Korf ���	 and in Bratko�s
implementation of A� ���� �



Figure 	� Example search tree generated by SMA	
Backed�up f �costs shown with original f �costs in
parentheses� Shaded region indicates pruned nodes�
Nodes are generated in alphabetical order	 and pruned
in the order GKJIHF� Memory holds �� nodes	 and
becomes full when J is added�


�� Algorithm description

IE is called with the start node and a bound of ��
f �costs are maintained in exactly the same way as in
SMA�	 except that backing up occurs when the bound
is violated and the recursive path unwinds back to the
point at which the previous second�best path begins�

Algorithm IE�n�bound��
if f�n� � bound then return�
if goal�n� then return with success�
generate S�n�� assign f �costs using pathmax�
if S�n� � fg return��
do until success or while f�n� � bound

best � node in S�n� with lowest f �cost�
newbound � min�bound� other f �costs in S�n���
call IE�best� newbound��
f�n�� lowest f �cost in S�n��

IE has the same formal properties as SMA�	 but
since it prunes away all but the current best path and
its sibling nodes	 one would expect a higher rate of
re�expansion�


�	 Example

Figure � shows three snapshots of IE operating in the
same search space shown in the SMA� example� In
the �rst snapshot	 IE has just been called on E� since
f
E� exceeds the bound of � 
which derives from A�s
right child�	 IE will return and f
D� is set to 
� This
exceeds D�s bound	 so IE returns from D and C then
calls IE on its right child	 F� This basically su�ers
the same fate as D 
see second snapshot�	 and the
recursion unwinds back to A� Then A calls IE on its
right child H	 with a bound of � from the left child�
The search proceeds	 producing the third snapshot�

� Performance

The experiments reported here have all been per�
formed on the perturbed ��puzzle� Small perturba�
tions are made to the manhattan�distance heuristic

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
od

es
 e

xp
an

de
d 

/ A
*

Memory size / A*

Figure 
� SMA	� Nodes expanded vs� memory size for
solution�length � ��

function	 giving each node a di�erent f �cost without
changing the structure of the puzzle�� The experi�
ments were run using Allegro Common Lisp on a Mac�
intosh Powerbook ��� laptop with �MB memory�
The �rst set of experiments shows the e�ect of

memory size on the number of nodes expanded by
SMA� 
Figure ��� The scatter plot was generated
by solving �� puzzles with various memory alloca�
tions covering the full range from the minimum up
to the memory used by A�� The x�axis shows memory
size as a fraction of the memory needed by A�� The
y�axis shows the ratio of nodes expanded by SMA�
to nodes expanded by A�� The data show that for
these puzzles	 good performance can be obtained us�
ing only a small fraction of the memory required by
A�� also	 the algorithm always expanded the same
number of nodes as A� when the allocation was more
than �� of the memory required by A�� The data
exhibit an intriguingly good �t to the relationship
nodes � memory������
The second set of experiments compares the average

number of nodes expanded by IDA�	 IE	 SMA� and
A�	 as a function of solution length 
Figure 
�� �� puz�
zles at each solution length were used	 where possible�
SMA� was run with memory size equal to twice the
solution length� Even this small additional amount
of memory allows SMA� to dominate IE	 which in
turn dominates IDA�� In terms of execution time	 the
rank order remains the same	 except on very small
problems	 despite the additional overhead incurred by
SMA� 
ranging from ��
 to ��
 times more expensive
per node�� This should be less important on problems
where node expansion time is signi�cant� No exhaus�
tive comparisons with MA� have yet been run	 but the
overhead for SMA� is about �ve times less� In some

�For reproducibility� the details of the perturbation
method are as follows� The perturbed heuristic value h� �
h������h���h�h���� where � � � is unique to the state in
question� For example� the state ��� � �� �� � �� �� � ��� is
represented as ������������ base �� The perturbed heuris�
tic is admissible and monotonic�



Figure �� Three stages in a search by IE�
Each tree is a snapshot of the recursion stack� Labels are f �cost!bound� Calls to IE occur in alphabetical order�

0

2

4

6

8

10

12

14

0 5 10 15 20 25

L
og

(n
od

es
 e

xp
an

de
d)

Solution length

ida*
ie

sma*
a*

Figure �� Log�nodes expanded� vs� solution length for
IDA	� IE� SMA	� A	�

harder problems	 MA� also expands up to �� times
more nodes because of its less strict use of pathmax�

� Conclusions

Problem domains are di�cult for memory�bounded
optimization algorithms if they contain a large num�
ber of distinct values for the heuristic function�� This
is because the algorithm will change its mind many
times about which solutions are most promising� Two
algorithms have been demonstrated that seem to have
reasonable performance	 but it would be useful to
have a deeper analysis of the limits on achievable ef�
�ciency� Clearly	 in the limit of large problems	 the
best path will change with every expansion	 since the
current best node�s successor will appear some �nite
amount worse because of reduced error in h	 whereas
the current second�best node will be only in�nitesi�
mally worse than the current best node�
In practical terms	 the impact of memory�bounded

search algorithms can be quite large� for example	
Soderland�s SNLP general�purpose planning system
has been modi�ed to use IE instead of A�	 enabling
a previously infeasible tyre�changing problem to be

�Memory�bounded algorithms also su�er from transpo�
sitions in graph�structured spaces� but this issue is beyond
the scope of the paper�

solved quite easily� Conversely	 IE and SMA� 
and
IDA�	 for that matter� enable a heuristic to be used
in systems	 such as Stickel�s Prolog Technology The�
orem Prover	 that currently use depth��rst iterative
deepening� The choice of which of the three memory�
bounded algorithms to use depends on several factors	
including the size of individual nodes� node expan�
sion time� available memory� the number of di�erent
heuristic values� and the expected size of OPEN in
SMA��
While we have focussed on a restricted class of

problems	 the same issues arise in any form of search
guided by heuristics� Many kinds of systems�neural
nets and simulated annealing	 for example�resort to
hill�climbing	 but could bene�t from a less blinkered
search�

References

��� Bratko	 I� 
�"��� The art of Prolog program�
ming� London� Academic Press�
��� Chakrabarti	 P� P�	 Ghose	 S�	 Acharya	 A�	 and
de Sarkar	 S� C� 
�"�"� Heuristic search in restricted
memory� AIJ	 ��	 �"������
��� Dechter	 R�	 and Pearl	 J� 
�"�
� Generalized best�
�rst strategies and the optimality of A�� JACM ��	

�
�
���
��� Doran	 J�	 and Michie	 D� 
�"��� Experiments
with the graph traverser� Proc� R� Soc� �A� ���	
��
��
"�
�
� Hart	 P� E�	 Nilsson	 N� J�	 and Raphael	 B� 
�"���
A formal basis for the heuristic determination of
minimum�cost paths� IEEE Trans� Sys� Sci� and
Cybernetics SSC��
�� ��������
��� Korf	 R� E� 
�"�
� Depth��rst iterative deepening�
An optimal admissible tree search� AIJ	 �	
��	 "��
��"�
��� Korf	 R� E� 
�""�� Best��rst search with limited
memory� UCLA Comp� Sci�Ann�
��� Wefald	 E� H�	 and Russell	 S� J� 
�"�"� Estimat�
ing the value of computation� The case of real�time
search� In Proc� AAAI Spring Symp� AI and Limited
Rationality	 Stanford	 CA�


