
1

Knowledge-based systems in 
Bioinformatics, 1MB602

Lecture 9: Genetic algorithms and

Genetic programming

Lecture overview

• Principles of genetic algorithms

• Multi-objective GAs

• Application guidelines

• Bioinformatics applications

• Genetic programming

• Bioinformatics applications

Optimization

• In real-world optimization the search space is often 
HUGE (or infinite)
– No option to examine all possible solutions to a problem

• One solution: local search methods or iterative 
improvement strategies
– Requires some ‘smart’ strategy to avoid local optima

– Or the need to run the selected algorithm multiple times

• A different strategy: Examine multiple solutions 
simultaneously and update them according to their 
values with respect to the other solutions
– Genetic algorithms

Genetic algorithms

• Idea: use principles of evolution to discover better 
solutions to a problem given a random starting set 
of solutions
– Reproduction

– Selection

– Crossover

– Mutation

• Operators act on chromosomes (solutions) in the 
population (set of solutions) to yield a set of new 
solutions (next generation)

• Iteratively apply the operators to the population 
moving the algorithm from one generation to the 
next

Chromosomes

• GAs are general and flexible algorithm that can be 
used on many different problems
– Accomplished through the use of chromosomes and 

objective functions

• Chromosome
– Genetic representation of a single solution to the given 

problem

– Usually a vector in numeric or binary format

• The performance (fitness) of a chromosome’s 
possibility of solving the problem is measured using 
an objective function

Chromosome

Objective function2531

Allele Fitness

Operators

• The genetic operators that act on the population of 
solutions must drive the population to find new, 
and better solutions
– Selection

– Mutation

– Crossover

• What makes the new generation?
– Select a number of individuals from the current population

– Combine them using crossovers to form new individuals

– Possibly mutate some of the alleles in the individuals

– Repeat the procedure until the next generation is filled



2

Selection

• How to choose which solutions to be used for 
reproduction and which solutions to be discarded?

• Elitism
– Select the top N chromosomes according to their fitness

– Progress these solutions to the next generation

– Thus, any solution with high fitness will always make it 
through to the next generation

• To make sure that the GA does not converge too 
quickly, we most introduce some stochastic 
selection

Roulette wheel selector

• Add all fitness values of chromosomes in the 
population to create a ‘virtual roulette wheel’

• Spin the wheel to select individuals for the next 
generation
– Greater chance of selecting a solution with high fitness

– Ensures that diversity in the population is maintained

Solution 1, 
fitness = 0.25

Solution 2, 
fitness = 0.125

Solution 3, 
fitness = 0.125

Solution 4, 
fitness = 0.5

Tournament selection

• Select a pair of chromosomes randomly and 
compare their fitness

• The chromosome with the greatest fitness are 
selected for entry in the next generation

• Even though the solutions selected have low fitness, 
one will be passed on to the next generation

• Repeat

• Stochastic selection: over the course of many 
generations, fitter individuals are more likely to be 
selected

Cross over

• Two parent solutions are combined to produce two 
new offspring solutions using the cross over 
operator

• For certain types of problems we must check that 
the offspring represent valid solutions

• Single point crossover
– Select two chromosomes and splits them at a randomly 

chosen point

– Recombine the parts to form two new individuals

• Problem: genes near the centre of the chromosome 
are perturbed more often than those at the edges

111111

222222

111122

222211

Uniform crossover

• Take multiple random points on each chromosome 
and create a ‘mask’ through which the 
chromosomes pass
– Ensures that each gene has an equal chance of being 

crossed over

111111

222222

212121

121212

Grey squares indicate
a ‘swap’ of alleles

Mutation

• Selection and crossover ensure that the best (part 
of) individuals have the greatest chance to progress 
into the next population

• There is also a need for manipulating the initial 
material to examine other, possibly better solutions

• Introduce mutators
– Choose a random point in the chromosome

– Perturb this allele either completely randomly or by some 
given amount



3

Generational vs. steady state

• How to progress from one generation to the next?

• Generational method
– A new population is generated at each iteration

• Steady state method
– The population stays largely the same but new solutions 

are added to it

1. Select a number of individuals from the population

2. Apply the reproduction, crossover and mutation operators

3. Reinsert them into the population using some criteria
– Replacement is often made with the weaker solutions in the 

populations thus increasing the fitness of the population

Pseudo code
Algorithm GA is

// start with an initial time
t := 0;
// initialize a usually random population of individuals
initpopulation P (t);
// evaluate fitness of all initial individuals of population
evaluate P (t);
// test for termination criterion (time, fitness, etc.)
while not done do

// increase the time counter
t := t + 1;
// select a sub-population for offspring production
P(t) := selectparents P (t-1);
// recombine the "genetic material" of the selected parents
recombine P (t);
// perturb the mated population stochastically
mutate P (t);
// evaluate it's new fitness
evaluate P (t);

od
end GA.

Multi-objective GAs

• Single-objective GAs are useful when a single, near-
optimal solution to a problem is desired
– One objective function

• Many science and engineering applications consist 
of objectives where there are conflicts
– Aircraft design: strength and weight

– Several objective functions

• Uses nearly the same operators as with single-
objective GAs

• The performance measure is differently determined
– Use dominance instead of fitness

Dominance

• One solution is said to dominate another if it is as 
good or better than that solution in all objectives
– Strong dominance

• Aircraft design
– Choose design with the greatest strength and lowest 

weight

• Use the dominance principle to rank the set of 
solutions according to the number of times they are 
dominated by other solutions

• Finds the optimal trade-off between two or more 
objective functions

• The top individuals with lowest rank (0) is called 
the Pareto-front (nondominated front) of the 
objective functions

Application guidelines

• Conditions to be met before applying GA to a 
problem:
1. The problem should be large

2. An objective function should be constructed which relates 
the decision variables of the problem and assigns a 
‘fitness’ according to the ‘goodness’ of the solution

3. Ideally, a (nearly) monotonic function should be used as 
objective function

4. The number and severity of constraints should be small 

5. Soft constraints (penalize the fitness) are generally 
preferable over hard constraints (not valid solutions)

Representation

• Must convert the problem to a format that can be 
optimized with the GA
– Vectors of integers, real values, or bit strings

• Genotype vs. phenotype
– The closer the representation of a chromosome is to the 

problem, the easier the chromosome is to interpret

• Bit representation allows for more flexible mutation
– A chromosome containing 4 genes of 10 alleles each has 40 

mutation and 39 crossover points 

– Only 4 mutation and 3 crossover points if integer 
representation is used



4

Time complexity

• For GAs, we can say something about the computational time 
of the objective function

• To order a population according to dominance, each solution 
must be compared to all other solutions

– O(MN3) in worst case to find the different fronts
• M: no. objectives, N: population size

– Including book-keeping: O(MN2)

Simple applications in bioinformatics

• Feature selection in classification problems
– Large number of possible subsets to select

– Solution: a bit vector (included, not included)

– Fitness: classification error

• Others?

Regulatory networks

• Time-series micro array study
– Derive a network of genetic interactions between genes in 

adjacent time steps

1. Discover rules of interaction
If gene_X_at_time0 is ON then gene_Y_at_time1 is OFF

2. Use discovered rules to create a network

• High computational complexity
– A number of genes can affect any number of genes in the 

next time step

– Ex. 5 of 100 genes affect a gene in the next time step yields 
100! / 5!(100-5)! = 75 287 520 possible combinations

– In typical gene expression experiments the number of 
combinations become unmanageable

• Use GA

Regulatory networks cont.

• Encode a chromosome as a matrix of gene 
interactions (floating points)
– Use sigmoid function to combine multiple sources of 

interactions (Weaver et al., 1999)

2.91-0.07G4

2.62G3

1.42G2

-1.1G1

G4G3G2G1
G1

G2 G3

G4

1.42
2.91

2.62

-0.07

-1.10

Regulatory networks cont.

• Fitness function
– The sum, over all time steps, of the difference between the 

predicted and actual level of activation (expression) of the 
gene

– Restrict the number of genes another gene can affect by 
adding a measure of null interactions to the objective 
function

• Complexity still to great: N2 possible interactions
– Experimental data suggests ≈ 6 genes may be affected by 

each other gene

• A modified GA could be used
– Discover one column in the matrix at a time (Keedwell et al., 

2003)

– Limit the possible number of affected genes by a K-value

Multiple sequence alignment

• Task: determine the optimal alignment of a set of 
sequences by inserting gaps to realign the sequences
– Relatively easy when considering just two sequences

• SAGA (Sequence Alignment Genetic Algorithm)
– Notredame and Higgins, 1996

• Make use of a population of alignments
– Performance is calculated in terms of the number of matched 

columns and the number of gaps introduced
– Elitist approach (50% of alignments maintained)
– 22 problem-specific operators

• 19 mutation operators
• 3 cross-over operations

• SAGA performs as well (or better) than established 
methods such as Clustal and MSA



5

Genetic programming

• One of the most recent techniques in AI

• Closely related to GA
– Stochastic, population-based approach to search and 

optimization

– Differs significantly in some operators used and in the 
representation of a solution

– Selectors are the same as in GA

• Solution is represented by a parse tree

• Originally designed for ‘automatic programming’
– Method for computers programming themselves

• The programs they derive can be used to represent a range of 
equations and functions which are based on the tree 
representation

• Successfully used in electronic circuit board design and 
automated programming tasks

Tree representation

• Two types of elements
– Terminals

• Variables in a computer program

• Constants

– Operators
• Perform operations on terminals

• Binary operators (+,-,*,…)

• Unary operators (log10, exp, sqrt, …)

• Rules:
– The first node is an operator

– An operator must have the number of arguments specified 
by its arity

– An operator can take any operator or any terminal as an 
argument

Tree construction

• Two commonly used methods for constructing a 
tree:
– ‘Grow’ method:

• First node is an operator
• Elements are taken randomly from the complete set and 

added to the tree
• Stops if tree has reached maximum depth or if all operators 

have terminals

– ‘Full’ method:
• First node is an operator
• Operators are randomly added to the tree until maximum 

depth is reached
• Terminals are then added to the final level of operators

• ‘Grow’ quicker than ‘full’ but may not be of desired 
depth

• ‘Grow’ may generate asymmetrical trees

Tree construction

• Grow

• Full

Fitness evaluation

• Different from GA
• A tree must be executed to give a result 

– Single or multiple values
– The result(s) is compared to the required result of the 

user-defined objective function

• If the user can specify WHAT is required of a 
program in an objective function, GP can be used to 
generate a tree (program) that describes HOW to 
produce what is required

• Using GAs, we are interested in the actual solution
• Using GP, we are interested in the sequence of 

instructions for producing the solution
– Desired and specific program behavior 

Crossover

• Cut the trees at certain points and exchange 
genetic material
– Operators must have the required number of terminals to 

operate correctly

– Crossover location in both chromosomes corresponds to a 
sub-tree in each individual

1. Choose a random point on the chromosome

2. Evaluate whether this point is the start of a sub-
tree, if not return to 1

3. Execute 1-2 on the second chromosome

4. Swap the sub-trees



6

Mutation

• In GA, mutation can occur by simply changing 
one bit in the chromosome

• Strategy 1: 
– Operators must be mutated to other operators and 

likewise with terminals

• Strategy 2: 
– Create new sub-trees using the grow or full method

1. Select a random point X on the tree

2. If X is not an operator, go to step one

3. Delete the sub-tree leading from X and add a new sub-
tree using either ‘grow’ or ‘full’

Bloat

• Theoretically, trees can have infinite depth

• However, large trees are costly to process and 
difficult to interpret

• A tree beyond a certain depth is often called a bloat
• Strategies to deal with this effect:

1. Introduction of a fitness penalty based on the depth of a 
tree
– Disadvantage: A satisfactory solution may be deleted

2. Introduction of a hard threshold so that trees cannot 
exceed a certain depth
– Disadvantage: Good trees might tend to be large

3. Multiple-objective approaches, using tree depth as a 
second objective
– Disadvantage: The problem may still exist

Data mining for drug discovery

• Use of GP to determine which of a set of compounds will 
satisfy the requirements (threshold) for bioavailability 
(Langdon et al., 2004)

– Bioavailability: metric on how well a drug will pass through the
various bodily systems and how much effect the drug will have

• A classification problem based on the threshold
– Poor vs. Acceptable

• Fitness
– Classification performance (area under ROC)

• Representation
– Each compound represented by 83 variables
– Mathematical operators and ‘if’ operator

• Tested on humans and rats
– Better on humans
– Human trees did not generalize to the rat data but the other way

around

Functional genomics in yeast data

• Data from time-series microarray data experiments
– Exposed to 79 different conditions (eg., heat shock)

• 6 functional classes assigned to genes
– Histone, Proteasome, TCA Pathway, Respiratory Complex, 

Ribosome, and HTH-containing

• Task: assign genes to correct class using the expression 
profiles

• GP method (Gilbert et al., 2000)
– 304 training genes and 152 testing genes
– Objective: minimize the number of classification errors
– Each individual (chromosome) comprised six rules
– Mathematical operators and if >= operator
– 100 % accuracy on Histone, TCA Pathway and Respiratory 

Complex
– Identified alpha-factor cell division cycle rule:

If alpha[35] >= alpha[49] then “TCA Pathway” else “Unknown”

References

• E. Keedwell, A. Narayanan, Intelligent 
bioinformatics: the application of artificial 
intelligence techniques to bioinformatics problems. 
Chichester : John Wiley, cop. 2005


