

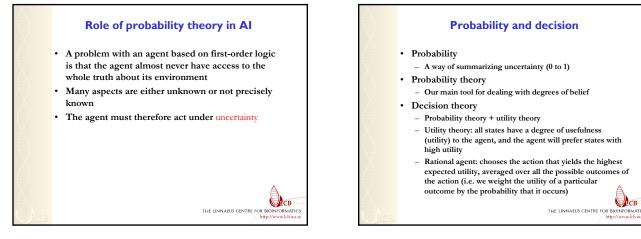
Lecture overview

LCB

ССВ

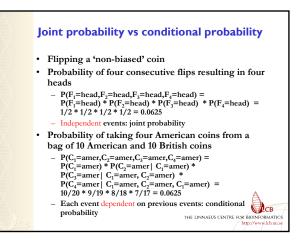
THE LINNAEUS CENTRE FO

- · Elementary probability theory
- Frequentist vs. Bayesian philosophy
- Machine learning
- **Bayesian networks**
- Markov processes •
- · Hidden Markov Models

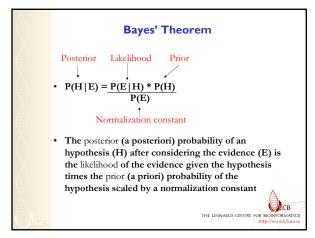


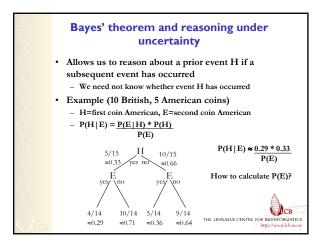
Probability as frequency · Drawing cards from a standard deck - P(card is jack of hearts | standard deck) = 1/52 P(card is of color hearts | standard deck) = 13/52 Probability of drawing a pair in 5-card poker P(hand contains a pair | standard deck) = # of hands with pairs total # of hands Use combinatorics to calculate the answer · General probability of event given some conditions (conditional probability) P(event | conditions)

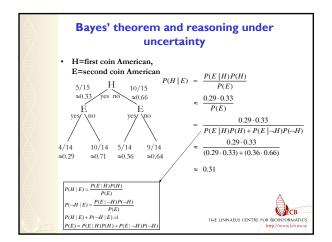
THE LINNAEUS CENTRE I

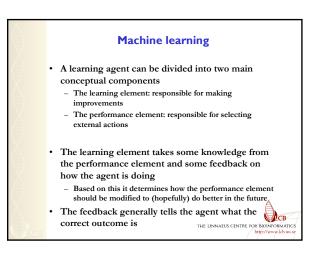


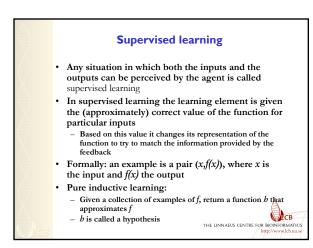
1

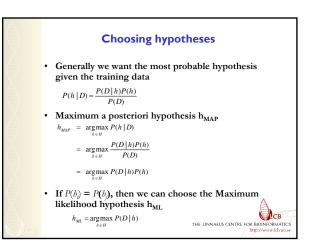












• For each hypothesis h in the hypothesis space H, calculate the posterior probability:

 $P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$

Output the hypothesis h_{MAP} with the highest posterior probability:

 $h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$

СВ

THE LINNAEUS CENTRE FOR BIOINFORMATI

THE LINNAEUS CENTRE FOR BIOIN

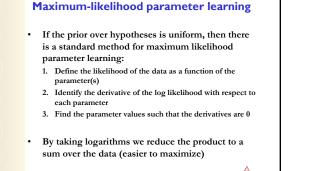
A discrete model example

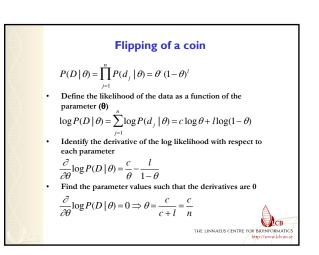
Assume data set D is n independent draws from a binomial distribution with unknown parameter θ Eg., *n* flips of a coin that can either show head or tail

$$P(D \mid \theta) = \prod_{j=1}^{n} P(d_j \mid \theta) = \theta^{c} (1-\theta)^{l}$$

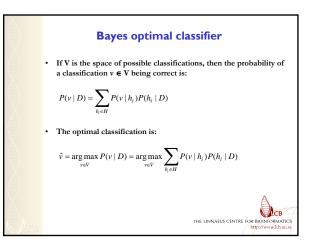
- *c* instances are heads and l = (n - c) instance are tail How can we estimate the parameter θ given the data?

Binominal distribution: probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p.





- So far we've sought the most probable hypothesis given the data D
- Given a new instance x, what is the most probable classification?
- It is not h_{MAP}(x)...
- Suppose H={ h_1, h_2, h_3 } and P(h_1)=0.4, P(h_2)= P(h_3)=0.3
- Let $V=\{C_p, C_2\}$ be the set of possible classifications - Suppose a new example is classified C_1 by h_1 and C_2 by h_2 and h_3
- The $h_{MAP}(x)$ hypothesis is C_1
- The most probable classification is $C_2 (0.3 + 0.3 > 0.4)$

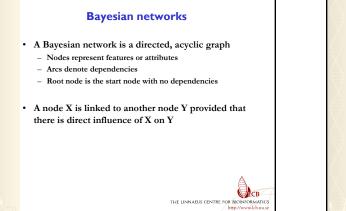


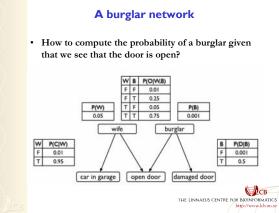
Gibbs classifier

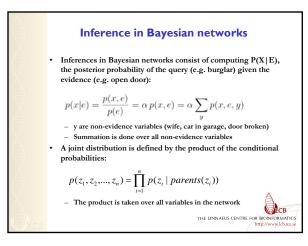
- Why can't we just use the Bayes optimal classifier every time?
 - Can be expensive if many hypotheses
- An alternative to the Bayes optimal classifier is a slightly less optimal procedure known as the Gibbs classifier
- 1. Choose a hypothesis h from H at random according to the posterior distribution (i.e. $P(h \mid D)$)
- 2. Use h to predict the classification of the next instance x
- The misclassification error for the Gibbs algorithm is at most twice the expected error of the Bayes optimal classifier!
 THE LINNAEUS CENTRE FOR BIORNORMATIC THE LINNAEUS CENTRE FOR BIORNORMATIC

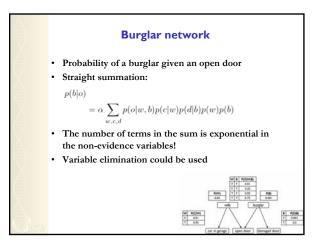
Bayesian (belief) networks X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; (∀x,y,p,x) P(X=x, |Y=y,P=x_b) = P(X=x, |Z=x_b) = P(X,Y|Z) = P(X|Z) A Bayesian network represents a set of conditional independence assertions: Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors

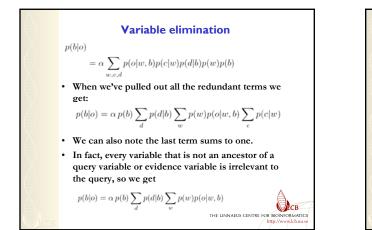
THE LINNAEUS CENTRE FOR BIOINFORMATIC

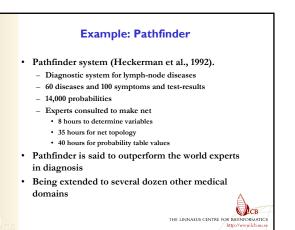


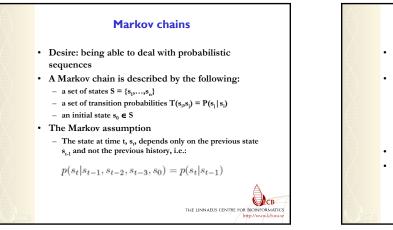


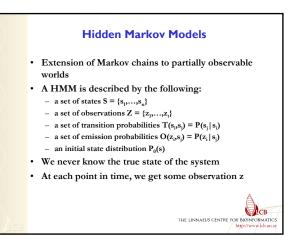


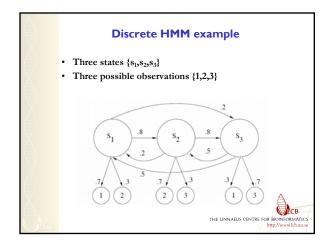


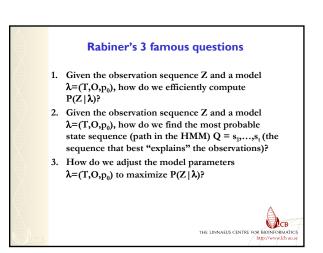


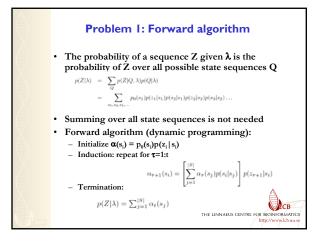


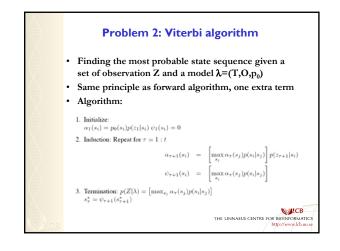












References

- E. Keedwell, A. Narayanan, Intelligent bioinformatics: the application of artificial intelligence techniques to bioinformatics problems. Chichester : John Wiley, cop. 2005
- S. Russell, P. Norvig, Artificial intelligence: a modern approach, Prentice-Hall, Upper Saddle River, New Jersey, 1995
- L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proc. of the IEEE, Vol.77, No.2, pp. 257-286, 1989

