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Lecture 8: Probabilistic Approaches

Lecture overview

• Elementary probability theory

• Frequentist vs. Bayesian philosophy

• Machine learning

• Bayesian networks

• Markov processes

• Hidden Markov Models

Role of probability theory in AI

• A problem with an agent based on first-order logic 
is that the agent almost never have access to the 
whole truth about its environment

• Many aspects are either unknown or not precisely 
known

• The agent must therefore act under uncertainty

Probability and decision

• Probability
– A way of summarizing uncertainty (0 to 1)

• Probability theory
– Our main tool for dealing with degrees of belief

• Decision theory
– Probability theory + utility theory

– Utility theory: all states have a degree of usefulness 
(utility) to the agent, and the agent will prefer states with 
high utility

– Rational agent: chooses the action that yields the highest 
expected utility, averaged over all the possible outcomes of 
the action (i.e. we weight the utility of a particular 
outcome by the probability that it occurs)

Probability as frequency

• Drawing cards from a standard deck
– P(card is jack of hearts|standard deck) = 1/52

– P(card is of color hearts|standard deck) = 13/52

• Probability of drawing a pair in 5-card poker
– P(hand contains a pair|standard deck) =

# of hands with pairs
total # of hands

– Use combinatorics to calculate the answer

• General probability of event given some conditions 
(conditional probability)
– P(event|conditions)

Joint probability vs conditional probability

• Flipping a ‘non-biased’ coin
• Probability of four consecutive flips resulting in four 

heads
– P(F1=head,F2=head,F3=head,F4=head) =

P(F1=head) * P(F2=head) * P(F3=head)  * P(F4=head)  =
1/2 * 1/2 * 1/2 * 1/2 = 0.0625

– Independent events: joint probability

• Probability of taking four American coins from a 
bag of 10 American and 10 British coins
– P(C1=amer,C2=amer,C3=amer,C4=amer) =

P(C1=amer) * P(C2=amer| C1=amer) * 
P(C3=amer| C1=amer, C2=amer)  * 
P(C4=amer| C1=amer, C2=amer, C1=amer)  =
10/20 * 9/19 * 8/18 * 7/17 = 0.0625

– Each event dependent on previous events: conditional 
probability
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Bayes’ Theorem

• P(H|E) = P(E|H) * P(H)
P(E)

• The posterior (a posteriori) probability of an 
hypothesis (H) after considering the evidence (E) is 
the likelihood of the evidence given the hypothesis 
times the prior (a priori) probability of the 
hypothesis scaled by a normalization constant

Posterior Likelihood Prior

Normalization constant

Bayes’ theorem and reasoning under 
uncertainty

• Allows us to reason about a prior event H if a 
subsequent event has occurred
– We need not know whether event H has occurred

• Example (10 British, 5 American coins)
– H=first coin American, E=second coin American

– P(H|E) = P(E|H) * P(H)
P(E)

H

E E
yes no

yes no yes no

5/15
≈0.33

10/15
≈0.66

4/14
≈0.29

10/14
≈0.71

5/14
≈0.36

9/14
≈0.64

P(H|E) ≈ 0.29 * 0.33
P(E)

How to calculate P(E)?

Bayes’ theorem and reasoning under 
uncertainty

• H=first coin American, 
E=second coin American

P(H | E) = P(E | H)P(H)
P(E)

≈ 0.29 ⋅ 0.33
P(E)

= 0.29 ⋅ 0.33
P(E | H)P(H) + P(E |¬H)P(¬H)

≈ 0.29 ⋅ 0.33
(0.29 ⋅ 0.33) + (0.36 ⋅ 0.66)

≈ 0.31

H

E E
yes no

yes no yes no

5/15
≈0.33

10/15
≈0.66

4/14
≈0.29

10/14
≈0.71

5/14
≈0.36

9/14
≈0.64
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Machine learning

• A learning agent can be divided into two main 
conceptual components
– The learning element: responsible for making 

improvements

– The performance element: responsible for selecting 
external actions

• The learning element takes some knowledge from 
the performance element and some feedback on 
how the agent is doing
– Based on this it determines how the performance element 

should be modified to (hopefully) do better in the future

• The feedback generally tells the agent what the 
correct outcome is

Supervised learning

• Any situation in which both the inputs and the 
outputs can be perceived by the agent is called 
supervised learning

• In supervised learning the learning element is given 
the (approximately) correct value of the function for 
particular inputs
– Based on this value it changes its representation of the 

function to try to match the information provided by the 
feedback

• Formally: an example is a pair (x,f(x)), where x is 
the input and f(x) the output

• Pure inductive learning:
– Given a collection of examples of f, return a function h that 

approximates f
– h is called a hypothesis

Choosing hypotheses

• Generally we want the most probable hypothesis 
given the training data

• Maximum a posteriori hypothesis hMAP

• If P(hi) = P(hj), then we can choose the Maximum 
likelihood hypothesis hML

P(h | D) =
P(D | h)P(h)

P(D)

hMAP = argmax
h∈H

P(h | D)

= argmax
h∈H

P(D | h)P(h)

P(D)

= argmax
h∈H

P(D | h)P(h)

hML = argmax
h∈H

P(D | h)
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Brute force MAP hypothesis learner

• For each hypothesis h in the hypothesis space H, 
calculate the posterior probability:

• Output the hypothesis hMAP with the highest 
posterior probability:

P(h | D) =
P(D | h)P(h)

P(D)

hMAP = argmax
h∈H

P(h | D)

A discrete model example

• Assume data set D is n independent draws from a 
binomial distribution with unknown parameter θ

• Eg., n flips of a coin that can either show head or 
tail

– c instances are heads and l =(n - c) instance are tail

• How can we estimate the parameter θ given the 
data?

P(D |θ) = P(d j |θ) = θ c (1−θ)l

j=1

n

∏

Binominal distribution: probability distribution of the number of successes in a 
sequence of n independent yes/no experiments, each of which yields success with 
probability p.

Maximum-likelihood parameter learning

• If the prior over hypotheses is uniform, then there 
is a standard method for maximum likelihood 
parameter learning:
1. Define the likelihood of the data as a function of the 

parameter(s)

2. Identify the derivative of the log likelihood with respect to 
each parameter

3. Find the parameter values such that the derivatives are 0

• By taking logarithms we reduce the product to a 
sum over the data (easier to maximize)

Flipping of a coin

• Define the likelihood of the data as a function of the 
parameter (θ)

• Identify the derivative of the log likelihood with respect to 
each parameter

• Find the parameter values such that the derivatives are 0

P(D |θ) = P(d j |θ) = θ c (1−θ)l

j=1

n

∏

logP(D |θ) = logP(d j |θ)
j=1

n

∑ = c logθ + l log(1−θ)

∂
∂θ

logP(D |θ) =
c

θ
−

l

1−θ

∂
∂θ

logP(D |θ) = 0⇒θ = c

c + l
=

c

n

Most probable classification of new 
instances

• So far we’ve sought the most probable hypothesis 
given the data D

• Given a new instance x, what is the most probable 
classification?

• It is not hMAP(x)…
– Suppose H={h1,h2,h3} and P(h1)=0.4, P(h2)= P(h3)=0.3

– Let V={C1,C2} be the set of possible classifications

– Suppose a new example is classified C1 by h1 and C2 by h2

and h3

– The hMAP(x) hypothesis is C1

– The most probable classification is C2 (0.3 + 0.3 > 0.4)

Bayes optimal classifier

• If V is the space of possible classifications, then the probability of 
a classification v ∈ V being correct is:

• The optimal classification is:
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Gibbs classifier

• Why can't we just use the Bayes optimal classifier 
every time?
– Can be expensive if many hypotheses

• An alternative to the Bayes optimal classifier is a 
slightly less optimal procedure known as the Gibbs 
classifier
1. Choose a hypothesis h from H at random according to 

the posterior distribution (i.e. P(h|D))

2. Use h to predict the classification of the next instance x

• The misclassification error for the Gibbs algorithm 
is at most twice the expected error of the Bayes
optimal classifier! 

Bayesian (belief) networks

• X is conditionally independent of Y given Z if the 
probability distribution governing X is independent 
of the value of Y given the value of Z;
– (∀xi,yj,zk) P(X=xi|Y=yj,Z=zk) = P(X=xi|Z=zk)

– P(X,Y|Z) = P(X|Z)

• A Bayesian network represents a set of conditional 
independence assertions:
– Each node is asserted to be conditionally independent of 

its nondescendants, given its immediate predecessors

Bayesian networks

• A Bayesian network is a directed, acyclic graph
– Nodes represent features or attributes

– Arcs denote dependencies

– Root node is the start node with no dependencies

• A node X is linked to another node Y provided that 
there is direct influence of X on Y

A burglar network

• How to compute the probability of a burglar given 
that we see that the door is open?

Inference in Bayesian networks

• Inferences in Bayesian networks consist of computing P(X|E), 
the posterior probability of the query (e.g. burglar) given the 
evidence (e.g. open door):

– y are non-evidence variables (wife, car in garage, door broken)

– Summation is done over all non-evidence variables

• A joint distribution is defined by the product of the conditional 
probabilities:

– The product is taken over all variables in the network
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Burglar network

• Probability of a burglar given an open door

• Straight summation:

• The number of terms in the sum is exponential in 
the non-evidence variables!

• Variable elimination could be used
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Variable elimination

• When we’ve pulled out all the redundant terms we 
get:

• We can also note the last term sums to one. 

• In fact, every variable that is not an ancestor of a 
query variable or evidence variable is irrelevant to 
the query, so we get

Example: Pathfinder

• Pathfinder system (Heckerman et al., 1992).
– Diagnostic system for lymph-node diseases

– 60 diseases and 100 symptoms and test-results

– 14,000 probabilities

– Experts consulted to make net
• 8 hours to determine variables

• 35 hours for net topology

• 40 hours for probability table values

• Pathfinder is said to outperform the world experts 
in diagnosis

• Being extended to several dozen other medical 
domains

Markov chains

• Desire: being able to deal with probabilistic 
sequences

• A Markov chain is described by the following:
– a set of states S = {s1,…,sn}

– a set of transition probabilities T(si,sj) = P(sj|si)

– an initial state s0 ∈ S

• The Markov assumption
– The state at time t, st, depends only on the previous state 

st-1 and not the previous history, i.e.:

Hidden Markov Models

• Extension of Markov chains to partially observable 
worlds

• A HMM is described by the following:
– a set of states S = {s1,…,sn}

– a set of observations Z = {z1,…,zt}

– a set of transition probabilities T(si,sj) = P(sj|si)

– a set of emission probabilities O(zi,sj) = P(zi|sj)

– an initial state distribution P0(s)

• We never know the true state of the system

• At each point in time, we get some observation z

Discrete HMM example

• Three states {s1,s2,s3}

• Three possible observations {1,2,3}

Rabiner’s 3 famous questions

1. Given the observation sequence Z and a model 
λ=(T,O,p0), how do we efficiently compute 
P(Z|λ)?

2. Given the observation sequence Z and a model 
λ=(T,O,p0), how do we find the most probable 
state sequence (path in the HMM) Q = s1,…,st (the 
sequence that best “explains” the observations)?

3. How do we adjust the model parameters 
λ=(T,O,p0) to maximize P(Z|λ)?
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Problem 1: Forward algorithm

• The probability of a sequence Z given λ is the 
probability of Z over all possible state sequences Q

• Summing over all state sequences is not needed
• Forward algorithm (dynamic programming):

– Initialize α(si) = p0(si)p(zi|si)
– Induction: repeat for τ=1:t

– Termination: 

Problem 2: Viterbi algorithm

• Finding the most probable state sequence given a 
set of observation Z and a model λ=(T,O,p0)

• Same principle as forward algorithm, one extra term

• Algorithm:
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