
1

Knowledge-based systems in Bioinformatics,
1MB602

Lecture 7:

Logical inference

Lecture overview

• Logical reasoning

• Inference rules

• Example proofs

• Natural deduction

• SLD Resolution

Reasoning

• The property of one fact following from some other facts is
mirrored by the property of one sentence being entailed by
some other sentences

Representation

World

Sentences Sentence

FactFacts

Sem
an

tics

Sem
an

tics

Entails

Follows

Reasoning cont.

• Entailment relation between sentences
– We want to generate new sentences that are necessarily true,

given that the old sentences are true

• An inference procedure that generates only entailed
sentences is called sound (truth-preserving)
– The inference steps should respect the semantics of the

sentences they operate upon

• The record of operation of a sound inference
procedure is called a proof

• A proof theory specifies which reasoning steps that
are sound

• An inference procedure is called complete if it can
find a proof for any sentence that is entailed

Inference

• Sound reasoning
– Logical inference

– Deduction

• A sentence is valid if and only if it is true under all
possible interpretations in all possible worlds
– “There is a wall in front of me OR there is not a wall in

front of me”

• A sentence is satisfiable if and only if there is some
interpretation in some world for which it is true

• A sentence that is not satisfiable is called
contradictory (unsatisfiable)
– “There is a wall in front of me AND there is not a wall in

front of me”

Inference in propositional logic

• Logical implication:|=
– A set of wfps {A1,…,An} logically implies the wfp B

(written A1,…,An |= B) if and only if B is True in every
situation in which every Ai is True

– A1,…,An |= B if and only if |= A1 ∧ … ∧ An → B

– Could be checked by truth tables:
• Check if B is True in every situation in which every Ai is

True

• Check if the wfp A1 ∧ … ∧ An → B is valid (tautology)

2

Propositional Logic – logical implication

• Check if (P ∨ H), ¬H |= P
• Check validity of the following implication:

((P ∨ H) ∧ ¬H)→ P
• Valid: True in every situation

TrueFalseFalseFalseFalse

TrueFalseTrueTrueFalse

TrueTrueTrueFalseTrue

TrueFalseTrueTrueTrue

((P ∨ H) ∧ ¬H)→ P(P ∨ H) ∧ ¬HP ∨ HHP

|= ((P ∨ H) ∧ ¬H)→ P
(P ∨ H), ¬H |= P

Inference rules for propositional logic

• Formula with 10 propositions has truth table with 210 = 1024
rows, too big to do by hand!

• Avoid the tedious work of building truth tables by using
inference rules

• Inference rule:
– A rule stating how sentence β can be derived from sentence α by

inference (α |- β)

• Soundness
– An inference rule (derivation) is sound if the conclusion is true in

all cases where the premises are true
A1, …, An |- B ⇒ A1, …, An |= B

• Completeness
– A1, …, An |= B ⇒ A1, …, An |- B

α

β

Inference rules for propositional logic
α, ¬α

⊥

¬α
⊥

α

α
⊥

¬α

α1 ∧ α2 ∧ … ∧ αn

αi

α1, α2, …, αn

α1 ∧ α2 ∧ … ∧ αn

α ∨ β, α→ χ, β→ χ
χ

αi

α1 ∨ α2 ∨ … ∨ αn

α→ β, α

β

α
β

α→ β

α→ β, β→α

α↔ β

α→β

α↔ β

(⊥I)

(¬I)

(∧I)

(∨I)

(→ I)

(↔I)

(¬E)

(∧E)

(∨E)

(→E)

(↔E)

Inference rules for propositional logic

• ⊥-Introduction
– From two contradictory sentences you

can infer contradiction (bottom) (⊥)

• ¬-Elimination (reductio ad absurdum)
– From the negation of a sentence

(premise) and contradiction you can
infer the sentence

• ¬-Introduction
– From a sentence (premise) and

contradiction you can infer the negation
of the sentence

α, ¬α

⊥

¬α
⊥

α

α
⊥

¬α

Inference rules for propositional logic

• And-Elimination
– From a conjunction, you can infer

any of the conjuncts

• And-Introduction
– From a list of sentences, you can

infer their conjunction

• Or-Elimination

• Or-Introduction

– From a sentence, you can infer
its disjunction with anything
else at all

α1 ∧ α2 ∧ … ∧ αn

αi

α1, α2, …, αn

α1 ∧ α2 ∧ … ∧ αn

α ∨ β, α→ χ, β→ χ
χ

αi

α1 ∨ α2 ∨ … ∨ αn

Inference rules for propositional logic

• →-Elimination (Modus ponens)
– From an implication and the

antecedent of the implication, you
can infer the consequent

• →-Introduction
– From a premise and a consequent

of the premise you can infer
implication

α→ β, α

β

α
β

α→ β

3

Inference rules for propositional logic

• ↔-Introduction
– From two implications in opposite

directions you can infer
equivalence

• ↔-Elimination
– From an equivalence you can infer

implication in either direction

α→ β, β→α

α↔ β

α→β

α↔ β

Inference rules for propositional logic
(derived)

• Double-Negation
Elimination

• Unit Resolution
– From a disjunction, if one of

the disjuncts is false, then you
can infer the other one is true

• Resolution
– Because β cannot be both true

and false, one of the other
disjuncts must be true

¬¬α

α

α ∨ β, ¬β

α

α ∨ β, ¬β ∨ γ

α ∨ γ

Logical equivalences (derived rules)

P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

¬(P ∧ Q) ⇔ ¬P ∧ ¬Q

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

P ⇒ Q ⇔ ¬Q ⇒ ¬P

P ⇒ Q ⇔ ¬P ∨ Q

P ⇔ Q ⇔ (P ⇒ Q) ∧ (Q ⇒ P)

P ⇔ Q ⇔ (P ∧ Q) ∨ (¬P ∧ ¬Q)

P ∧ ¬P ⇔ False

P ∨ ¬P ⇔ True

Deduction in practice

• Rules for ‘cancellation’ using brackets (¬I, ¬E, →I)

1. Only premises are allowed to be cancelled

2. No formula within a bracket could be used
afterwards

3. No non-cancelled premise may lie within a bracket

4. Brackets may not be crossed

5. (Consequence) Premises must be cancelled bottom-
up

α
β

α→ β

¬α
⊥

α

α
⊥

¬α
(¬I) (¬E) (→I)

Deduction in practice

Three strategies for deduction
1. Direct derivation

• Identify the parts of the conclusion
• Derive the parts using elimination rules
• Combine the parts into the conclusion using introduction

rules

2. Indirect derivation
• Assume the negation of the conclusion (extra premise)
• Derive contradiction (bottom)

3. Hypothetical derivation
• You are supposed to prove A1,…,An |- B→C
• Assume B (extra premise)
• Derive C: A1,…,An,, B |- C
• Derive implication using →I

Prove that
A ↔ B ∧ C, D → B, D ∧ C |- A

1. A ↔ B ∧ C P

2. D → B P

3. D ∧ C P

4. C 3, (∧E)

5. D 3, (∧E)

6. B 2, 5, (→E)

7. B ∧ C 4, 6, (∧I)

8. B ∧ C → A 1, (↔E)

9. A 7, 8, (→E)

Example deduction I (direct derivation)

Premises

4

Example deduction II (hypothetical
derivation)

Prove that
A→(B→C) |- (A→B)→(A→C)

1. A→(B→C) P

2. A→B P (extra)

3. A P (extra)

4. B→C 1, 3, (→E)

5. B 2, 3, (→E)

6. C 4, 5, (→E)

7. A→C 3-6, (→I)

8. (A→B)→(A→C) 2-7, (→I)

Example deduction III (indirect
derivation)

• Prove that
A→B |- ¬B→¬A

1. A→B P

2. ¬B P (extra)

3. A P (extra)

4. B 1, 3, (→E)

5. ⊥ 2, 4, (⊥I)

6. ¬A 3-5, (¬I)

7. ¬B→¬A 2-6, (→I)

Some heuristics

• Assume you are supposed to show A1,…,An |- A

• A = ¬B
– Assume B as an extra premise. Derive ⊥. Use (¬E).

• A = B ∧ C
– Derive B and C separately. Use (∧I).

• A = B ∨ C
– Derive B or C. Use (∨I).

• A = B → C
– Assume B. Derive C. Use (→I)

• A = B ↔ C
– Derive B → C and C → B separately. Use (↔ I).

Inference rules in FO predicate logic

• Same rules as in propositional logic

• Additional rules:
– Universal elimination

– Universal introduction

– Existential elimination

– Existential introduction

Inference rules in FO predicate logic

• Universal introduction (∀I)
– If X is not free in any premise

that P(X) depends on

• Universal elimination (∀E)
– t free for X in P(X) (no variable in t

may be bound in P(X))

• Existential elimination (∃E)
– X not free in any non-cancelled

premise before P(X)

– X not free in Q

• Existential introduction (∃I)
– t free for X in P(X)

P(X)

∀X P(X)

P(t)
∀X P(X)

∃X P(X)
P(t)

Q
∃X P(X)

P(X)
Q

Example deduction

• Prove that
∀X ¬P(X) |- ¬∃X P(X)

1. ∀X ¬P(X) P

2. ∃X P(X) P (Extra)

3. P(X) P (Extra)

4. ¬P(X) 1, (∀E)

5. ⊥ 3, 4, (⊥I)

6. ⊥ 2, 3-5, (∃E)

7. ¬∃X P(X) 2-6, (¬I)

5

Reasoning with definite logic programs

Given a program P and a goal G, find instances of G which are
logical consequences of P

gchild(X,Y) ⇐ child(X,Z) ∧ child(Z,Y)

child(john,mary) ⇐
child(mary,bob) ⇐
child(mary,sue) ⇐

⇐ child(john,X) ∧ child(X,bob)
X = mary

⇐ gchild(john,X)
X = bob, X = sue

SLD refutation
gchild(X,Y) ⇐ child(X,Z) ∧

child(Z,Y)

child(john,mary) ⇐
child(mary,sue) ⇐
child(mary,bob) ⇐

gchild(V,T)

gchild(X,Y) ⇐ child(X,Z) ∧ child(Z,Y)

child(V,Z) ∧ child(Z,T)

child(mary,T)

child(john,mary) ⇐

child(mary,sue) ⇐

X=V Y=T

V=john Z=mary

T=sue

Answer: V=john T=sue

Unification

• Consider the following substitution σ (binding of variables to
terms)

{f(a, Z)/X, g(Z)/Y}
• Instance tσ of a term t under σ:

f(X, h(X, f(Y, V)))σ = f(f(a, Z), h(f(a, Z), f(g(Z), V))
• A unifier of terms t and s is any σ such that tσ = sσ

f(f(a, Z),h(X, f(g(X), W))) f(V, h(V, f(g(f(Y, U)), V)))
{f(a,U)/V, f(a,U)/X, a/Y, U/Z, f(a,U)/W}

f(f(a, U), h(f(a, U), f(g(f(a, U)), f(a, U))))
• This is a most general unifier

Unification cont.

• Unification procedure:

f(f(a, Z), h(X, f(g(X), W))) f(V, h(V, f(g(f(Y, U)), V)))

{V=f(a,Z), X=V, X=f(Y,U), W=V}
{V=f(a,Z), X=f(a,Z), X=f(Y,U), W=f(a,Z)}

{V=f(a,Z), X=f(a,Z), f(a,Z)=f(Y,U), W=f(a,Z)}
{V=f(a,Z), X=f(a,Z), Y=a, Z=U, W=f(a,Z)}
{V=f(a,U), X=f(a,U), Y=a, Z=U, W=f(a,U)}

{f(a,U)/V, f(a,U)/X, a/Y, U/Z, f(a,U)/W}

SLD resolution principle

⇐ A1 ∧ … ∧ Ai-1 ∧ Ai∧ Ai+1 ∧ … ∧ An, B0 ⇐ B1 ∧ … ∧ Bn

(⇐ A1 ∧ … ∧ Ai-1 ∧ B1 ∧ … ∧ Bn∧ Ai+1 ∧ … ∧ An) θ

where θ is the most general unifier of Ai and B0

Which i to be chosen: computation rule

SLD tree
gchild(X,Y) ⇐ child(X,Z) ∧

child(Z,Y)

child(john,mary) ⇐
child(mary,sue) ⇐
child(mary,bob) ⇐

gchild(V,T)

child(V,Z) ∧ child(Z,T)

child(mary,T)

V = john T = sue V = john T = bob

SLD tree shows all resolvents of
each selected atom

6

References

• K.B. Hansen, Grundläggande logik, 3:e upplagan,
2001, Studentlitteratur

• S. Russell, P. Norvig, Artificial intelligence: a
modern approach, Prentice-Hall, Upper Saddle
River, New Jersey, 1995

• S. C. Shapiro, Propositional, First-Order And
Higher-Order Logics: Basic Definitions, Rules of
Inference, and Examples, in L. L.M. Iwanska, S. C.
Shapiro, Eds., Natural Language Processing and
Knowledge Representation: Language for
Knowledge and Knowledge for Language, AAAI
Press/The MIT Press, Menlo Park, CA, 2000, 379-
395

