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Knowledge-based systems in Bioinformatics, 
1MB602

Lecture 7:

Logical inference

Lecture overview

• Logical reasoning

• Inference rules

• Example proofs

• Natural deduction

• SLD Resolution

Reasoning

• The property of one fact following from some other facts is 
mirrored by the property of one sentence being entailed by 
some other sentences
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Reasoning cont.

• Entailment relation between sentences
– We want to generate new sentences that are necessarily true, 

given that the old sentences are true

• An inference procedure that generates only entailed 
sentences is called sound (truth-preserving)
– The inference steps should respect the semantics of the 

sentences they operate upon

• The record of operation of a sound inference 
procedure is called a proof

• A proof theory specifies which reasoning steps that 
are sound

• An inference procedure is called complete if it can 
find a proof for any sentence that is entailed

Inference

• Sound reasoning
– Logical inference

– Deduction

• A sentence is valid if and only if it is true under all 
possible interpretations in all possible worlds
– “There is a wall in front of me OR there is not a wall in 

front of me”

• A sentence is satisfiable if and only if there is some 
interpretation in some world for which it is true

• A sentence that is not satisfiable is called 
contradictory (unsatisfiable)
– “There is a wall in front of me AND there is not a wall in 

front of me”

Inference in propositional logic

• Logical implication:|=
– A set of wfps {A1,…,An} logically implies the wfp B 

(written A1,…,An |= B) if and only if B is True in every 
situation in which every Ai is True

– A1,…,An |= B if and only if |= A1 ∧ … ∧ An → B

– Could be checked by truth tables:
• Check if B is True in every situation in which every Ai is 

True

• Check if the wfp A1 ∧ … ∧ An → B is valid (tautology)



2

Propositional Logic – logical implication

• Check if (P ∨ H), ¬H |= P
• Check validity of the following implication:

((P ∨ H) ∧ ¬H)→ P
• Valid: True in every situation

TrueFalseFalseFalseFalse

TrueFalseTrueTrueFalse

TrueTrueTrueFalseTrue

TrueFalseTrueTrueTrue

((P ∨ H) ∧ ¬H)→ P(P ∨ H) ∧ ¬HP ∨ HHP

|= ((P ∨ H) ∧ ¬H)→ P
(P ∨ H), ¬H |= P

Inference rules for propositional logic

• Formula with 10 propositions has truth table with 210 = 1024 
rows, too big to do by hand!

• Avoid the tedious work of building truth tables by using 
inference rules

• Inference rule:
– A rule stating how sentence β can be derived from sentence α by 

inference (α |- β)

• Soundness
– An inference rule (derivation) is sound if the conclusion is true in 

all cases where the premises are true
A1, …, An |- B   ⇒ A1, …, An |= B

• Completeness
– A1, …, An |= B   ⇒ A1, …, An |- B

α

β

Inference rules for propositional logic
α, ¬α

⊥

¬α
⊥

α

α
⊥

¬α

α1 ∧ α2 ∧ … ∧ αn

αi

α1, α2, …, αn

α1 ∧ α2 ∧ … ∧ αn

α ∨ β, α→ χ, β→ χ
χ

αi

α1 ∨ α2 ∨ … ∨ αn

α→ β,   α

β

α
β

α→ β

α→ β, β→α

α↔ β

α→β

α↔ β

(⊥I)

(¬I)

(∧I)

(∨I)

(→ I)

(↔I)

(¬E)

(∧E)

(∨E)

(→E)

(↔E)

Inference rules for propositional logic

• ⊥-Introduction
– From two contradictory sentences you 

can infer contradiction (bottom) (⊥)

• ¬-Elimination (reductio ad absurdum)
– From the negation of a sentence 

(premise) and contradiction you can 
infer the sentence

• ¬-Introduction
– From a sentence (premise) and 

contradiction you can infer the negation 
of the sentence

α, ¬α

⊥

¬α
⊥

α

α
⊥

¬α

Inference rules for propositional logic

• And-Elimination
– From a conjunction, you can infer 

any of the conjuncts

• And-Introduction
– From a list of sentences, you can 

infer their conjunction

• Or-Elimination

• Or-Introduction

– From a sentence, you can infer 
its disjunction with anything 
else at all

α1 ∧ α2 ∧ … ∧ αn

αi

α1, α2, …, αn

α1 ∧ α2 ∧ … ∧ αn

α ∨ β, α→ χ, β→ χ
χ

αi

α1 ∨ α2 ∨ … ∨ αn

Inference rules for propositional logic

• →-Elimination (Modus ponens)
– From an implication and the 

antecedent of the implication, you 
can infer the consequent

• →-Introduction
– From a premise and a consequent 

of the premise you can infer 
implication

α→ β,   α

β

α
β

α→ β
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Inference rules for propositional logic

• ↔-Introduction
– From two implications in opposite 

directions you can infer 
equivalence

• ↔-Elimination
– From an equivalence you can infer 

implication in either direction

α→ β, β→α

α↔ β

α→β

α↔ β

Inference rules for propositional logic 
(derived)

• Double-Negation 
Elimination

• Unit Resolution
– From a disjunction, if one of 

the disjuncts is false, then you 
can infer the other one is true

• Resolution
– Because β cannot be both true 

and false, one of the other 
disjuncts must be true

¬¬α

α

α ∨ β, ¬β

α

α ∨ β, ¬β ∨ γ

α ∨ γ

Logical equivalences (derived rules)

P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

¬(P ∧ Q) ⇔ ¬P ∧ ¬Q

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

P ⇒ Q ⇔ ¬Q ⇒ ¬P

P ⇒ Q ⇔ ¬P ∨ Q

P ⇔ Q ⇔ (P ⇒ Q) ∧ (Q ⇒ P) 

P ⇔ Q ⇔ (P ∧ Q) ∨ (¬P ∧ ¬Q)

P ∧ ¬P ⇔ False

P ∨ ¬P ⇔ True

Deduction in practice

• Rules for ‘cancellation’ using brackets (¬I, ¬E, →I)

1. Only premises are allowed to be cancelled

2. No formula within a bracket could be used 
afterwards

3. No non-cancelled premise may lie within a bracket

4. Brackets may not be crossed

5. (Consequence) Premises must be cancelled bottom-
up 

α
β

α→ β

¬α
⊥

α

α
⊥

¬α
(¬I) (¬E) (→I)

Deduction in practice

Three strategies for deduction
1. Direct derivation

• Identify the parts of the conclusion
• Derive the parts using elimination rules
• Combine the parts into the conclusion using introduction 

rules

2. Indirect derivation
• Assume the negation of the conclusion (extra premise)
• Derive contradiction (bottom)

3. Hypothetical derivation
• You are supposed to prove A1,…,An |- B→C
• Assume B (extra premise)
• Derive C: A1,…,An,, B |- C
• Derive implication using →I

Prove that 
A ↔ B ∧ C, D → B, D ∧ C |- A

1. A ↔ B ∧ C P

2. D → B P

3. D ∧ C P

4. C 3, (∧E)

5. D 3, (∧E)

6. B 2, 5, (→E)

7. B ∧ C 4, 6, (∧I)

8. B ∧ C → A 1, (↔E)

9. A 7, 8, (→E)

Example deduction I (direct derivation)

Premises
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Example deduction II (hypothetical 
derivation)

Prove that
A→(B→C) |- (A→B)→(A→C)

1. A→(B→C) P

2. A→B P (extra)

3. A P (extra)

4. B→C 1, 3, (→E)

5. B 2, 3, (→E)

6. C 4, 5, (→E)

7. A→C 3-6, (→I)

8. (A→B)→(A→C) 2-7, (→I)

Example deduction III (indirect 
derivation)

• Prove that
A→B |- ¬B→¬A

1. A→B P

2. ¬B P (extra)

3. A P (extra)

4. B 1, 3, (→E)

5. ⊥ 2, 4, (⊥I)

6. ¬A 3-5, (¬I)

7. ¬B→¬A 2-6, (→I)

Some heuristics

• Assume you are supposed to show A1,…,An |- A

• A = ¬B
– Assume B as an extra premise. Derive ⊥. Use (¬E).

• A = B ∧ C
– Derive B and C separately. Use (∧I).

• A = B ∨ C
– Derive B or C. Use (∨I).

• A = B → C
– Assume B. Derive C. Use (→I)

• A = B ↔ C
– Derive B → C and C → B separately. Use (↔ I).

Inference rules in FO predicate logic

• Same rules as in propositional logic

• Additional rules:
– Universal elimination

– Universal introduction

– Existential elimination

– Existential introduction

Inference rules in FO predicate logic

• Universal introduction (∀I)
– If X is not free in any premise

that P(X) depends on

• Universal elimination (∀E)
– t free for X in P(X) (no variable in t

may be bound in P(X))

• Existential elimination (∃E)
– X not free in any non-cancelled 

premise before P(X)

– X not free in Q

• Existential introduction (∃I)
– t free for X in P(X)

P(X)

∀X P(X)

P(t)
∀X P(X)

∃X P(X)
P(t)

Q
∃X P(X)

P(X)
Q

Example deduction

• Prove that
∀X ¬P(X) |- ¬∃X P(X)

1. ∀X ¬P(X) P

2. ∃X P(X) P (Extra)

3. P(X) P (Extra)

4. ¬P(X) 1, (∀E)

5. ⊥ 3, 4, (⊥I)

6. ⊥ 2, 3-5, (∃E)

7. ¬∃X P(X) 2-6, (¬I)
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Reasoning with definite logic programs

Given a program P and a goal G, find instances of G which are 
logical consequences of P

gchild(X,Y) ⇐ child(X,Z) ∧ child(Z,Y)

child(john,mary) ⇐
child(mary,bob) ⇐
child(mary,sue) ⇐

⇐ child(john,X) ∧ child(X,bob)
X = mary

⇐ gchild(john,X)
X = bob, X = sue

SLD refutation
gchild(X,Y) ⇐ child(X,Z) ∧

child(Z,Y)

child(john,mary) ⇐
child(mary,sue) ⇐
child(mary,bob) ⇐

gchild(V,T)

gchild(X,Y) ⇐ child(X,Z) ∧ child(Z,Y)

child(V,Z) ∧ child(Z,T)

child(mary,T)

child(john,mary) ⇐

child(mary,sue) ⇐

X=V Y=T

V=john Z=mary

T=sue

Answer: V=john T=sue

Unification

• Consider the following substitution σ (binding of variables to 
terms)

{f(a, Z)/X, g(Z)/Y}
• Instance tσ of a term t under σ:

f(X, h(X, f(Y, V)))σ =  f(f(a, Z), h(f(a, Z), f(g(Z), V))
• A unifier of terms t and s is any σ such that tσ = sσ

f(f(a, Z),h(X, f(g(X), W)))    f(V, h(V, f(g(f(Y, U)), V)))
{f(a,U)/V, f(a,U)/X, a/Y, U/Z, f(a,U)/W}

f(f(a, U), h(f(a, U), f(g(f(a, U)), f(a, U))))
• This is a most general unifier

Unification cont.

• Unification procedure:

f(f(a, Z), h(X, f(g(X), W)))    f(V, h(V, f(g(f(Y, U)), V)))

{V=f(a,Z), X=V, X=f(Y,U), W=V}
{V=f(a,Z), X=f(a,Z), X=f(Y,U), W=f(a,Z)}

{V=f(a,Z), X=f(a,Z), f(a,Z)=f(Y,U), W=f(a,Z)}
{V=f(a,Z), X=f(a,Z), Y=a, Z=U, W=f(a,Z)}
{V=f(a,U), X=f(a,U), Y=a, Z=U, W=f(a,U)}

{f(a,U)/V, f(a,U)/X, a/Y, U/Z, f(a,U)/W}

SLD resolution principle

⇐ A1 ∧ … ∧ Ai-1 ∧ Ai∧ Ai+1 ∧ … ∧ An,   B0 ⇐ B1 ∧ … ∧ Bn

(⇐ A1 ∧ … ∧ Ai-1 ∧ B1 ∧ … ∧ Bn∧ Ai+1 ∧ … ∧ An) θ

where θ is the most general unifier of Ai and B0

Which i to be chosen: computation rule

SLD tree
gchild(X,Y) ⇐ child(X,Z) ∧

child(Z,Y)

child(john,mary) ⇐
child(mary,sue) ⇐
child(mary,bob) ⇐

gchild(V,T)

child(V,Z) ∧ child(Z,T)

child(mary,T)

V = john T = sue V = john T = bob

SLD tree shows all resolvents of 
each selected atom
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