
1

Knowledge-based systems in
Bioinformatics, 1MB602, 2006

Lecture 6: Search

Lecture overview

• Goal based agents

• Search terminology

• Specifying a search problem

• Search considerations

• Uninformed search

• Heuristic methods

• Iterative improvement algorithms

Goal based agents

• Intelligent agents act in such a way that the
environment goes through a sequence of states that
maximizes the performance measure

• The agent adopts a goal and aims to satisfy it

• The agent can decide what to do by first examining
different possible sequences of actions that lead to
states of known value, and then choosing the best
one

• The process of looking for such a sequence is called
search

Search terminology

• State
– A situation the search can visit

• State space
– The set of all states reachable from the initial state by any

sequence of actions

• Path
– A sequence of actions in the state space leading from one

state to another

• Solution
– A state with a particular property, i.e. solves the problem

(achieves the task)
– May be more than one solution to a problem

• Strategy
– How to choose the next step in the path at any

given state

Specifying a search problem

• Initial state
– The start state of the search which holds description about

the current state of the world

• Operators
– Functions taking the search from one state to another

– Specify how the agent can move around the search space

• Goal test
– Has the search succeeded?

Route planning example

• Initial state
– City the journey starts in

• Operators
– Moving from one city to

another

• Goal test
– Located in a certain city?

2

2D folding example

• Initial state
– A non-folded chain of amino acids (hydrophobic or

hydrophilic identifiers)

• Operators
– Different types of rotation

• Goal test
– Protein completely folded?

– Energy of protein below a certain predefined threshold

Search considerations

• What are we looking for?
– What is interesting, the solution or the path to the solution?

• Completeness
– Is the search guaranteed to find a solution when it exists?

– Pruning vs. exhaustive searches

• Time and space complexity

• Optimality
– Does the strategy find the highest-quality solution when there are

several different solutions?

• Soundness
– Is the path (and each step in the path) truth-preserving?

– Important for automated reasoning

• Additional information
– Uninformed search uses no additional information

– Heuristic search take advantages of various information

Graph analogy

• A state space can be seen as a graph G = (V,E) ,
where V is a set of vertices (nodes) and E is a set of
edges

• In a state space graph, V corresponds to the state
space and E corresponds to transitions in G taking
the search from one state (vertex) to another

• Choices that determines which vertex to expand
and which edge to go down define the search
strategy

Formulizing search in a state space

V = {A, B, C, D, E, F, G, H, S}
E = {{S,A}, {S,B}, {S,C}, {A,D}, {A,E},

{B,G}, {C,F}, {D,H}, {E,G}, {F,G}}

The size of a problem
is usually described
in terms of the number of
possible states

– Tic-tac-toe: 39 states

– Rubik’s cube: ≈1019 states

– Chess: ≈10123 states

S

A

ED

B

G

C

H

F

Formulizing search in a state space cont.

• Each vertex has a set of successor vertices
– The set of all legal actions for each vertex

– Each successor is determined by applying the edge’s
action to the predecessor vertex

• Expanding a vertex generates the successors of that
vertex and adds them to the search graph

• The search algorithm maintains a list of successor
vertices, a state list
– The first item in the state list corresponds to the next state

to expand

– Expanding a vertex manipulates the state list by removing
the visited vertex and adding the successor vertices to
the state list

– How to add depends on the search strategy

Search techniques

• Partial vs. complete search
– Partial search: only interested in a solution, i.e. only a

subset of the search space may be considered

– Complete search: the best solution is desired, e.g.
optimization problems

• Uninformed vs. informed search
– Uninformed search: only the information of the current

state and possible one-step transitions to other states are
considered when choosing the next state in the path

– Informed search: estimate path and/or action cost and use
this information to choose the next vertex to expand

3

Breadth first search

The state list corresponds to a queue (first in first out)

The algorithm visits the vertices one level at a time

Current State list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D {E,G,F,H}

E {G,F,H,G}

G {F,H,G}

States visited: 7

States expanded: 6

S
start

A

ED

B

G
goal

C

H

F

Associating costs with actions

• Often we are interested in the search path and the cost of that
path instead of just the solution

• BFS again:

Current State list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D {E,G,F,H}

E {G,F,H,G}

G {F,H,G}

States visited: 7

States expanded: 6

5 2

9
6

4

4

6 2

7

S
start

A

ED F

B

G
goal

C

H
Path: SBG
Cost: 8

Depth first search

• The state list corresponds to a stack (last in first out)
• Always expands one of the nodes at the deepest level of the

tree

Current State list
{S}

S {A,B,C}
A {D,E,B,C}
D {H,E,B,C}
H {E,B,C}
E {G,B,C}
G {B,C}

States visited: 6
States expanded: 5

5 2

9
6

4

4

7

S
start

A

ED

B

G
goal

C

H
Path: SAEG
Cost: 15

BFS vs. DFS
• BFS

– Complete
– Optimal when all actions, i.e. edges, have the same cost

• finds the shallowest goal state

– Time complexity: O(bd)
• b: branching factor, d: solution depth

– Space complexity: O(bd)
– Memory requirements are a bigger problem than the execution

time

• DFS
– Can get stuck going down the wrong path

• Not complete (may go down a path of infinite depth)
• Not optimal
• Should be avoided for search graphs with large or infinite maximum

depths

– Time complexity: O(bm)
• b: branching factor, m: maximum depth of the search graph

– Space complexity: O(bm) (need only store the nodes in one path)

Other uninformed search strategies
• UCS: uniform cost search (branch and bound)

– Use priority queue for state list, sorted by path cost
– g(v) = cost of path from start vertex s to current vertex v
– Sort vertices by increasing value of g
– Complete, optimal, time and space complexity: O(bd)
– Note: the same as BFS if g(v) = DEPTH(v)!

• IDS: iterative deepening search
– Do DFS to depth 0, then depth 1, then dept 2, etc until a

solution is found
– Combines the best of BFS and DFS
– Complete, optimal, space complexity: O(bd), time

complexity: O(bd)
• Bidirectional search

– Simultanously search both forward from the initial state
and backward from the inital state and backwards from
the goal

Informed search

• In informed search strategies we introduce an
evaluation function that associates a value to each
vertex describing the desire to expand that vertex

• The state list is order so that the vertex with the
best evaluation is expanded first → best first search

• Evaluation of a vertex = estimation of path cost
from vertex to solution

• The evaluation function is often called a heuristic
function h:
– h(v) = estimated cost of the cheapest path from the state at

vertex v to goal state

– Heureka (“I have found it”, Archimedes)

– Problem specific

4

Best first search strategies

• Greedy search (Best-first search)
– Minimize estimated cost to reach a goal
– Evaluation function: h(v) = estimated cost to the

goal from v
– The vertex whose state is judged to be closest to

the goal is always expanded first (best first)
– Neither optimal nor complete

Best first search strategies cont.
• A* search

– Evaluation function f(v) = g(v) + h(v) = estimated
cost of the cheapest solution through v

• h(v) = estimated cost to the goal from v
• g(v) = the cost of the path so far through v

– Important restriction: h must be admissible, i.e.
never overestimate the cost to reach the goal –
optimistic thinking

• h(v) ≤ h*(v) always holds, where h*(v) is the actual cost

– Complete, optimal, and optimally efficient among
all optimal search algorithms

– Still exponential time (and memory) unless |h(v)-
h*(v)| < O(log h*(v))

• Unfortunatly, this is seldom the case

– Note: with h(v) = 0, this is a UCS

Determining f(v)

v g(v) h(v) f(v) h*(v)

S

A

B

C

D

E

G
g(v) = actual cost to get to vertex v

from start
h(v) = estimated cost to get to a goal

from vertex v
f(v) = g(v) + h(v)

actual cost to get from start to v
plus estimated cost from v to goal

1 5

3 97

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

0

1

5

8

4

8

10/9/13

8

8

4

3

∞

∞

0

8

9

9

11

∞

∞

10/9/13

9

9

4

5

∞

∞

0

Optimal path = SBG
Cost = 9
Admissible!

A* search example

f(v) = h(v) + g(v)

Current State list

{S:0+8}

S {A:1+7,B:5+4,C:8+3}

A {B:9,G:1+9+0,C:11,

D:1+3+∞,E:1+7+∞}

B {G:5+4+0,G:10,C:11,

D:∞,E:∞}

G {C:11,D:∞,E:∞}

1 5

3 97

8

4

S
h=8

A
h=7

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

Path: S,B,G
Cost: 9

Heuristics

• Heuristic methods rely on good heuristics

• Should give the best score to the state we are
looking for, and good scores to similar states

• Should be easy and quick to compute

• Better heuristics (less optimistic) translate directly
into higher efficiency in time and memory!

• Some examples of heuristics
– route planning: staight line distance

– protein folding: physical, free energy

– differences between observed and expected data

– cost, profit (economic applications)

– cost, production time, utilization of resources (industrial
applications)

A variant of A* search

• Reducing memory requirements by turning A* into
IDA*, Iterative Deepening A*

• Modify IDS to use an f-cost limit rather than a depth
limit

• Each iteration expands all vertices inside the
contour for the current f-cost

• Once the search inside a given contour has been
completed, a new iteration is started using a new f-
cost for the new contour

• Complete and optimal
• Memory requirments O(bm): depth first search
• In the worst case, every node in the state space has

a different f-cost, thus if A* examines k nodes then
IDA* will examine O(k2) nodes

5

Memory-efficient A*: SMA* search

• IDA* repeat states in and between iteration

• SMA* uses a queue to store visited nodes sorted by
f-cost

• Prune the worst-case node from memory when
space is needed for a better one

• Uses all available memory: specify a maximum
number of nodes MAX that can be stored

• Guaranteed to be optimal if MAX is at least as large
as the number of nodes in the optimal solution

Iterative improvements algorithms

• In optimization problems the desired solution is the maximal
(minimal) value of a function

– Problem example: maximize the number of hydrophobic
neighbors by two dimensional folding

• Applicable if each state contain all the information required
for a solution (i.e. the path is irrelevant)

• Iterative improvement strategy
– Start with a complete configuration and make modifications to

improve its quality

• Two types of iterative improvement algorithms
– Hill climbing

• Choose as the next state to expand the state with the highest value
(if higher than the current)

– Simulated annealing
• Allow temporary changes that makes things worse,

to avoid getting stuck in local maxima

Local search optimization

• In optimization applications we want to find the
best state, i.e. the state with the highest score.

• To be sure to find the best state, all states have to
be examined.

• In many real-world applications the number of
states is huge, so there is no way to do an
exhaustive search.

• In these cases there are algorithms to find solutions
that are reasonably good, although they might not
be optimal.

→ local search optimization

Local search optimization

• Assumption: States that are close to each other have
similar scores.

• Basic idea: Look through states in the neighborhood
and gradually move to better and better states.

• Example: S
s=1

A
s=4

E
s=10

D
s=7

B
s=6

G
s=7

C
s=2

Local search optimization cont.

• Problems:
– Local search methods can get stuck in local optima → no

guarantee to find the optimal solution.

– Usually no way to know how much the obtained result
differs from the global optimum.

– Obtained result depends on starting state.

• Ways to deal with this:
a) Restart the search with different (random) start states

b) Occasionally make sub-optimal moves (simulated
annealing)

c) Force the search to explore different parts of the search
space (tabu search)

Hill climbing
Hill climbing is the basic form of local search
(example shown before)

Simulated annealing

• Basic idea: Sometimes make random sub-optimal
moves. Sub-optimal moves are more common in the
beginning of the search

• When should the function make random steps?
– Depends on the temperature, which depends on the time.

– Temperature decreases throughout the search.

• This requires quite a few parameter settings

6

Tabu search

• Also based on hill climbing, but some moves become
illegal (hence the name Tabu)

• We have to choose among the allowed neighbor (i.e.
that are not on the Tabu list)

• If a neighbor is much better than the best state, we may
still use it even if it is on the Tabu list (aspiration
criterion)

• Which states are on the Tabu list
– Allready visited states

– States with certain properties

– ...

References

• S. Russell, P. Norvig, Artificial intelligence: a
modern approach, Prentice-Hall, Upper Saddle
River, New Jersey, 1995

• Z. Michalewicz, D.B. Fogel, How to Solve It:
Modern Heuristics, Springer, 2000

• S. Russell, Efficient memory-bounded search
methods, ECAI 92: 10th European Conference on
Artificial Intelligence Proceedings, 1992

• E. Keedwell, A. Narayanan, Intelligent
bioinformatics: the application of artificial
intelligence techniques to bioinformatics problems.
Chichester : John Wiley, cop. 2005

