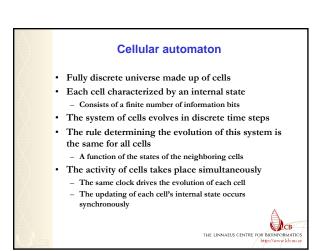
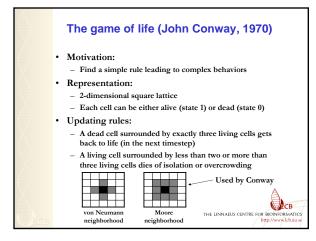
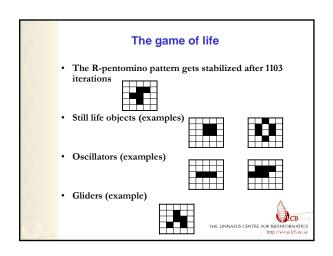


Lecture overview • Cellular automaton • *The game of life* • Bioinformatics examples • Summary of the course

THE LINNAEUS CENTRE FO


Cellular automaton Idealization of a physical system – Space and time are discrete – Physical quantities (states of the automaton) take only a finite set of values Invented by von Neumann (late 1940s) Extract the abstract mechanisms leading to selfreproduction of biological organisms


 a system having the capability to produce another organism of equivalent complexity with only its own resources


ACB

THE LINNAEUS CENTRE FOR BIOINP

Can mimic or simulate physical system

The game of life

- The game of life is one of the simplest examples of what is sometimes called emergent complexity or selforganizing systems
- It is the study of how elaborate patterns and behaviors can emerge from very simple rules
- E.g. explains how the stripes on a zebra can arise from a tissue of living cells growing together In Nature we do not know all the rules. The game of
- life lets us observe a system where we do

What can be learnt? E.g.

- Behavior of cells or animals can be better understood using simple rules
- Behavior that seems intelligent, such as we see in ant colonies, might just be simple rules that we don't understand yet
- More: http://www.math.com/students/wonders/life/life.html

Cellular automata - theoretical capabilities

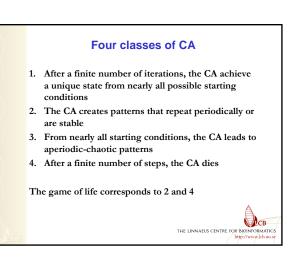
• The game of Life is a CA capable of universal computations

- A computer can be built inside the Life "universe"
- Streams of gliders can be used to send information just as electrical signals are used to send information in a physical computer
- These streams of gliders can react in a way to perform all of the logical functions on which a modern computer is based
- Several interesting special-purpose computers have been constructed

LCB

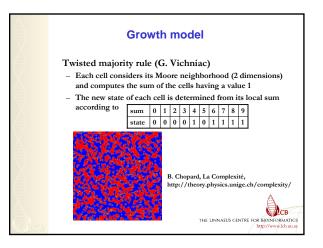
- Possible to mimic any computation process
- CAs have the capacity to be non-restrictive computational technique THE LINNAEUS CENTRE FOR BIOINFORMATIC

Cellular automata


- Provide simple models of complex systems
- A collective behavior can emerge out of the sum of many, simply interacting, components
- A global behavior may obey new laws that are not obviously extrapolated from the individual properties The whole is more than the sum of all parts
- CAs can do more than just behaving similarly to natural
- dynamical processes
- Can represent actual models of a given physical system leading to macroscopic predictions
- The macroscopic behavior of many systems is quite disconnected from its microscopic reality
- E.g. flows of fluid and gas are very similar at a macroscopic scale, in spite of their microscopic nature
- Many physical processes are well suited to the cellular

automata approach

Pattern formation, growth phenomena, etc.



АСВ

State transition rules

- The behavior of an CA is a function of the initial conformation and the transition rules
- Although the rules are simple, simulation is the only way to determine the CA's behavior
- Second-order rules
- Use the historic state behavior of cells (current and neighbors) to compute a new state for the current cells Short-term memory in the decision making
- Probabilistic rules
 - State changes are executed according to a probability
 - Could choose from a number of state changes based on their probability
 - CA behaves in a stochastic rather than deterministic Асв THE LINNAEUS CENTRE FOR BIOINFORMATIC manner

Competition models and cell differentiation

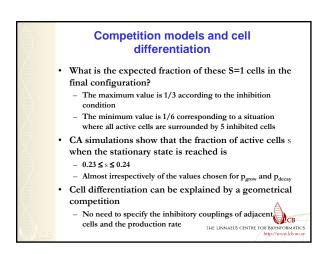
- Competitive dynamics
 - Cells compete for some resources at the expense of their nearest neighbors
 - A winner is a cell of state 1 and a looser of state 0
 - No two winner cells can be neighbors
 - Any looser cell must have at least one winner neighbor
- Direct application in biology

Development of drosophila

- 25% of the cells forming the embryo are evolving to the state of neuroblast (that develop into neurons)
- How can we explain this differentiation and the observed fraction?
 - · At the beginning, all cells are assumed equivalent

THE LINNAEUS CENTRE FOR BIOINFORMATIC

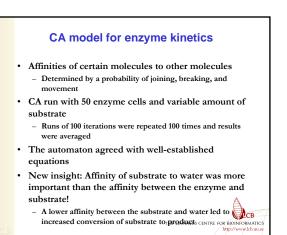
Competition models and cell differentiation Competition takes place between adjacent biological cells Each cell produces some substance S The production rate is inhibited by the amount already present in the neighboring cells Differentiation occurs when a cell reaches a level of S above a given threshold Hexagonal lattice (5 neighbors + current) Approximation of the cell arrangement in drosophila embryos S can be either 0 (inhibited) or 1 (active)


LCB

THE LINNAEUS CENTRE FOR BIOINFORMATIC

Competition models and cell differentiation

- Rules
 - A S=0 cell will grow (i.e., turn to S=1) with probability p_{grow} provided that all its neighbors are 0
 - A cell in state S=1 will decay (i.e., turn to S=0) with
 - probability p_{decay} if it is surrounded by at least one active cell
- Evolution stops when no S=1 cell feels any inhibition and when all S=0 cells are inhibited by their neighborhood
 - Cells with S=1 are those which will differentiate
- What is the expected fraction of these S=1 cells in the final configuration?



CA model for enzyme kinetics (Kier et al., 1996)

- Model the reaction between an enzyme and substrate in water
- 110*110 grid of cells (12100 cells)
- Can take values of E (enzyme), S (substrate), P (product), and W (water)
- 69 % covered with water, 31% space
- Added ingredients replace water
- Each cell has a probability associated with its movement and its interaction with other molecules
 - Enzymes can interact with S, P, and W, but not ${\bf E}$
 - Extended von Neumann neighborhood (2 steps in each direction)

Simulation of an apoptosis reaction network (Siehs et al. 2002)

- Simulation of the molecular reaction pathways of apoptosis (cell death)
 - Potentially greater understanding of the mechanisms of cancerous cells
 - Cancer is often characterized by the inhibition of the apoptosis process
- 2-dimensional grid
- Complex data structure at each cell
- Registers storing variables relating the current state of the molecules within the cell and its surrounds
- Each of the cells could be in a large number of states due to combination of parameters in registers

THE LINNAEUS CENTRE FOR BIOINFORMATIC

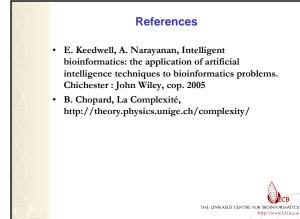
Simulation of an apoptosis reaction network

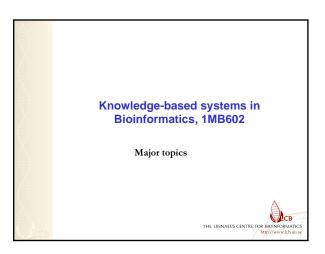
Registers:

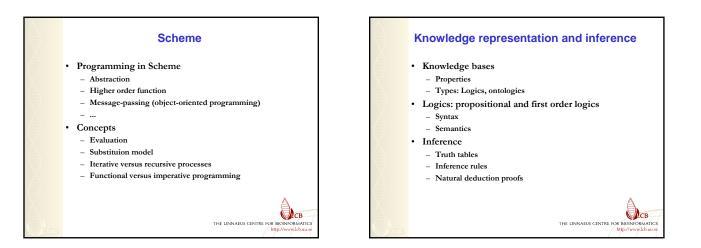
- 1. Type of molecular object(s) occupying the site
- 2. Reaction rate constants for the occupying objects
- 3. Molecular neighborhood (Moore). Types of molecules
- 4. Distribution of local momentum (hard sphere collision model)
- Potential energy status of the molecules at the site (function of the attraction/repulsion of molecules on the site and in the neighborhood)
- 6. Molecular reaction lists (what occurs if two molecules occupy the same site?)
- 7. Reaction product lists (products of the reactions in 6)
- Moved direction (location of each of the molecules at time t+1 given information in 4 and 5)
 THE LINNAEUS CENTRE FOR BIOMORPHICE THE LINNAEUS CENTRE FOR BIOMORPHICE

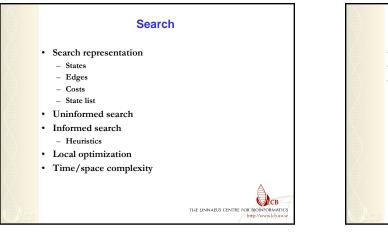
Simulation of an apoptosis reaction network

- Each time the CA was updated the following steps were performed
 - 1. Evaluation of molecular collisions and redistribution of
 - kinetic energies
 - Propagation of type information from cells to register
 Computation of the local potential energy situation
 - Computation of the local potential ef
 Evaluation of chemical reactions
 - Evaluation of chemical reaction
 - 5. Computation of the grid positions of the molecules in the next timestep
- 6. Full update of the grid based on 1-5

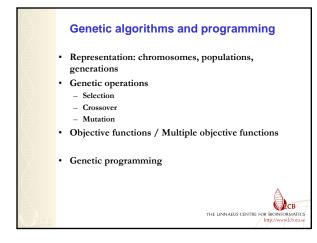

Simulation of an apoptosis reaction network

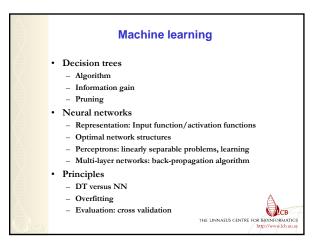

Results:


- Authors found a set of experiments where changes in concentration of certain proteins could affect the apoptosis
- An equilibrium existed between several proteins
- Confirmed what was known experimentally
- Replicated expected results for different sets of stimuli
- Able to simulate the process of apoptosis under a number of artificial conditions with a small computational requirement


ACB

THE LINNAEUS CENTRE FOR BIOINFO





Probabilistic approaches Bayes' rule Machine learning/supervised learning Bayesian (belief) networks Representation Representation

Cellular automatas

- Representation: cells, rules, discrete time
- The game of Life
- Purpose/power
- Possible applications

