
1

Knowledge-based systems in
Bioinformatics, 1MB602

Lecture 11: Neural networks

Artifical neural networks

• Inspired by how the brain works – a mathematical
model for the operation of the brain

• Brain versus computers:
– serial versus parallell computing

– even though a computer is much faster than in raw
swithcing speed, the brain is faster at what it does

• An ANN is a number of nodes (units) connected by
links. Each link is associated with a numerical
weight.
– Training set: (x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn))

– Learning in an ANN is reduced to the process of using the
training data to tune the weights so that the network
represents the function f

Network structure

• Feed-forward network: all units are connected to all units in the
next layer

– One (sufficiently large) hidden layer can represent any continuous
function

– More hidden layers can even represent discontinuous functions

• Recurrent network: feed back loops, internal states (memory):
– E.g. The brain is clearly a recurrent network

Units

)(ii inga =

• Input function: linear component, ini that compute
the weighted sum of the units input values

• Activation function: nonlinear transformation, g, of
the input function into the unit’s activation value

(ini)

∑ ⋅=
j

jiji aWin ,

Activation functions

Typically, the threshold of the activation function is embedded in the
input function:

1 and where),()(0,0
0

,0
1

, −==⋅=⋅= ∑∑
==

atWaWstepaWstepa j

n

j
jij

n

j
jijti

Boolean functions

• Units can represent the basic logical gates

• Thus, units can build networks that can represent
any Boolean function

2

Optimal network structures

• Too small network: the network will be incapable of represtning
the desired function

• Too large network: the network can memories all the examples by
forming a lookup table

– Overfitting!

• Finding the optimal network structure is itself a search problem
– Potentially time consuming since very state in this search involves

training and evaluating a neural network of a particular size
– Genetic algorithms
– Hill-climbing
– Evaluation: e.g. cross validation

Perceptrons

• Perceptrons: single-layer, feed-forward networks
– Majority function: outputs 1 if a majority of the n inputs are 1

(would require a decision tree with O(2n) nodes)

• A perceptron can only represent a function if there is a line
that separates all the white dots (0s) from the black dots (1s),
i.e. functions that are linearly separable

Learning linearly separable functions

• Only one unit:

• Err = T – O, where T is the correct output

• Perceptron learning rule:
– α is called the learning rate

• Learning algorithm:
– Initiate weights, e.g. Random values between 0 and 1

– For each example
• Compute O

• Update weights with the learning rule

– Repeat until all examples correctly predicted

• Epoch: updating all weights for every example

• Note: the perceptron rule is guaranteed to learn a
linearly separable function given enough examples!

)(0 ∑=
j

jj IWStepO

ErrIWW jjj ××+← α

Perceptrons versus decision trees: Example

(a) Majority function
(b) Waiting problem

How to encode the examples in ANN

• Local encoding: use single input units for each
example attribute
– E.g. None = 0.0, Some = 0.5, Full=1.0

• Distributed encoding: use one input unit for
every attribute value

• The local encoding approach is normally applied
to the output

Multilayer feed-forward networks

• Problem: assess the blame for the error and divide it among the
contributing weights in all layers

• For derivation, we need a continuous activation function: the
sigmoid

• Weight update rule:

– At the output node(s)

– The propagation rule for:

ijijij aWW Δ××+← α,,

)(')(iiii ingOT ×−=Δ

i
i

ijjj Wing Δ×=Δ ∑ ,)('

3

The backpropagation algorithm

1. Initialize the weights in the network

2. Compute the Δ values for the output units using
the observed error

3. Start with the output layer and repeat for each layer
in the network until the last hidden layer
1. Propagate the Δ values back to the previous layer

2. Update the weights between the layers

4. Repeat 2-3 for each example

5. Repeat 2-4 until convergence

ANN discussion

• Time complexity for one epoch: O(m|W|), where m
is the number of examples and |W| is the number
of weights

• Very insensitive to noise

• ANNs are basically black box approach – unlike
decision trees they do not provide a clue to how a
prediction is made

• Difficult to incorporate prior biological data

• Can also be used for clustering (unsupervised
learning): self-organizing maps

Applications (in Bioinformatics)

• Very popular for predicting various protein
properties from sliding sequence windows:
– Secondary structure

– Disorder

– Finding sequence motifs

– ...

• But is also used for more general prediction
applications like medical diagnosis, etc

• Classical AI applications
– Speech recognition

– Handwriting recognition

– Image recognition

– Driving a car!

References

• E. Keedwell, A. Narayanan, Intelligent
bioinformatics: the application of artificial
intelligence techniques to bioinformatics problems.
Chichester : John Wiley, cop. 2005

• S. Russell, P. Norvig, Artificial intelligence: a
modern approach, Prentice-Hall, Upper Saddle
River, New Jersey, 1995

