
1

Knowledge-based systems in
Bioinformatics, 1MB602

Lecture 10: Decision trees

Lecture overview

• Classification

• Decision trees

• Information theory

• Gain criterion

• Gain ratio

• Over fitting and pruning

• Application guidelines

• Bioinformatics examples

Classification

• The task of creating rules or structures (classification model)
that will group individuals into predetermined classes

• Supervised approach
– The algorithm has knowledge of the classes into which

individuals fall when constructing these structures

• Example questions:
– What features make an individual prone to sunburn?

– What are the genetic differences between diseased individuals
and normal individuals?

• Mutually exclusive classes
– ‘Sick’ vs. ‘Healthy’

• Select those features which are most strongly associated with
a particular classification for each sample

– The fewer features used, the better the classification

• Interpretation of model important

Decision (Identification) trees

• Proven very successful in the classification domain
1. Relatively undemanding in computational terms
2. Provide clear, explicit reasoning of the decision making

in the from of decision trees which can be converted to
sets of rules

3. They are accurate and robust in the face of noise

• DTs are trees of features that provide tests for
classifying the samples in the data according to
their most important features

• Basic premise:
– Only a few features are required to classify all samples
– Problem: identify this set of features

• Approach:
– Test each feature iteratively to identify its potential for

dividing the samples into classes

Example

• Umpires’ decision to play a cricket match
– Data on three factors thought to influence the decision

• Task: determine the rules the umpires are
explicitly or implicitly using

PlayDryPoorSunny

PlayDampGoodOvercast

No playDampPoorRaining

No playDampPoorOvercast

No playDryPoorOvercast

No playDryGoodRaining

PlayDryGoodOvercast

PlayDryGoodSunny

Umpires’ decisionGround conditionLightWeather

Decision tree algorithm

• Aim: split the data so that each subset of the data
uniquely identifies a class in the data

• Algorithm summary:
1. For each feature, compute the gain criterion
2. Select the best feature and split the data according to the

values in that feature

3. If each of the subsets contains only one decision value,
then stop. Otherwise reapply 1-3 on each of the subsets of
data

4. If the data is not completely classified but there are no
more splits available then stop

2

Cricket game

• Need to divide the set of training examples into two
smaller sets: ‘Play’ and ‘No play’

• Light = Good yields four examples:

• Light = Poor yields four examples:

• What feature to use for splitting is determined
using a measurement of its effectiveness

PlayDampGoodOvercast

No playDryGoodRaining

PlayDryGoodOvercast

PlayDryGoodSunny

PlayDryPoorSunny

No playDampPoorRaining

No playDampPoorOvercast

No playDryPoorOvercast

Gain criterion

• Based on the amount of information that a test on
the data conveys (information theory)

• The information contained within a test is related to
the probability of selecting one training example
from the training set T from a class Cj:
– Information (measured in bits):

– Expected information from the training set (k different
classes):

−log2

freq C j ,T()
T

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

in(T) = −
freq C j ,T()

T
* log2

freq C j ,T()
T

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

j=1

k

∑

Gain criterion

• Information yielded by a split x:

where n is the number of values for feature x and Ti
is the subset of the training set given by the ith
value of x

• The gain given by a particular test:

• The decision tree algorithm proceeds through each
feature, computing the gain criterion, selects the
best of these and then uses the same method for the
remaining subsets

inx (T) = −
Ti

T
* in(Ti)

i=1

n

∑

gain(X) = in(T) − inx (T)

Cricket game
Start with the hypothesis that no features are
important and then check each feature in turn

PlayDryPoorSunny

PlayDampGoodOvercast

No playDampPoorRaining

No playDampPoorOvercast

No playDryPoorOvercast

No playDryGoodRaining

PlayDryGoodOvercast

PlayDryGoodSunny

Umpires’ decisionGround conditionLightWeather

in(T) = −4 /8 ⋅ log2(4 /8) − 4 /8 ⋅ log2(4 /8) =1

5.05.01
5.0

)())2/2(log2/2 (8/2
)())4/2(log4/2)4/2(log4/2(8/4

)())2/2(log2/2(8/2)(
)()(

2

22

2

=−=
=

⋅−⋅+
⋅−⋅−⋅+

⋅−⋅=

Gain
bits

Raining
Overcast
SunnyTin

No playPlay

weather

Cricket game

PlayDryPoorSunny

PlayDampGoodOvercast

No playDampPoorRaining

No playDampPoorOvercast

No playDryPoorOvercast

No playDryGoodRaining

PlayDryGoodOvercast

PlayDryGoodSunny

Umpires’ decisionGround conditionLightWeather

inlight (T) = 4 /8 ⋅ (−3/4 ⋅ log2(3/4) −1/4 ⋅ log2(1/4)) (good)
+4 /8 ⋅ (−1/4 ⋅ log2(1/4) − 3/4 ⋅ log2(3/4)) (poor)

= 0.811bits
Gain = 1− 0.811= 0.189

Cricket game

PlayDryPoorSunny

PlayDampGoodOvercast

No playDampPoorRaining

No playDampPoorOvercast

No playDryPoorOvercast

No playDryGoodRaining

PlayDryGoodOvercast

PlayDryGoodSunny

Umpires’ decisionGround conditionLightWeather

inlight (T) = 5 /8 ⋅ (−3/5 ⋅ log2(3/5) − 2 /5 ⋅ log2(2 /5)) (dry)
+3/8 ⋅ (−1/3 ⋅ log2(1/3) − 2 /3 ⋅ log2(2 /3)) (damp)

= 0.951bits
Gain = 1− 0.951= 0.049

3

First split: weather feature

• Splits in three subsets: Sunny, Overcast, and Raining

• Overcast subset (S) needs a new split!

PlayDampGoodOvercast

No playDampPoorOvercast

No playDryPoorOvercast

PlayDryGoodOvercast

in(S) = −2 /4 ⋅ log2(2 /4) − 2 /4 ⋅ log2(2 /4) =1
inlight (S) = 2 /4 ⋅ (−2 /2 ⋅ log2(0 /2) − 0 /2 ⋅ log2(0 /2)) (good)

+2 /4 ⋅ (−0 /2 ⋅ log2(0 /2) − 2 /2 ⋅ log2(2 /2)) (poor)
= 0 bits

Gain = 1− 0 =1

inground (S) = 2 /4 ⋅ (−1/2 ⋅ log2(1/2) −1/2 ⋅ log2(1/2)) (dry)
+2 /4 ⋅ (−1/2 ⋅ log2(1/2) −1/2 ⋅ log2(1/2)) (damp)

= 1 bits
Gain = 1−1 = 0

Cricket game

Final decision tree:

Weather

Play No play Light

Play No play

Sunny
Raining

Overcast

Good Poor

Interpretation:

IF weather = sunny THEN play
IF weather = raining THEN no play
IF weather = overcast AND light = good THEN play
IF weather = overcast AND light = poor THEN no play

Continuous data

• Only considered discrete case

• Real world examples are often continuous

• Do the same as in the discrete cases but
– Swap the = operator with other comparison operators

(<, <=, >, >=)

Gain ratio

• Gain criterion biased towards tests which have
many subsets (weather feature)
– Tests that result in many subsets are not necessarily those

that will yield the most useful information

• Idea: take into account the size of the subsets
created by the test
– Divide the gain by the information contained by the

number of subsets in the split (split information measure)

splitin(X) = −
Ti

T
⋅ log2

Ti

T

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

gainratio(X) =
gain(X)

splitin(X)

Overfitting and pruning
• Every algorithm involved with classification runs the risk of

overfitting the data
– The alg. learns the errors (noise) in the data as well as the

underlying structure of the processes that created the data
– Occurs because the alg. tries to reduce the classification error

• To identify this phenomenon:
– Split data into training data (≈75%) and test data (≈25%)
– Build tree on the training data and test the model on the test

data
– A tree X is overfitted if there exists a tree Y that do better on the

unseen test set, but worse on the training set

• Prune complex branches of the tree
– Results in less accurate trees for the training data
– Post-pruning: Use some estimate of the expected error of:

• The current subtree
• A leaf that could replacing the subtree

– Pre-pruning: Stop increasing the size of a subtree when the
information gained is below some threshold

Other disadvantages of DT

• The algorithm shown here generates only one tree
based on information gain
– This is a greedy strategy

– More accurate trees with worse start splits may exist!

• Would benefit from some search strategy
– A split could be evaluated in terms of its current ability to

classify the data AND the accuracy of the splits later on in
the algorithm run

– This will unavoidably increase the time complexity of the
algorithm

4

Application guidelines

• DTs are useful when there are a large number of
records in the data

• Restricted to classification problems where the class
of the training examples are known (supervised
learning)

• In bioinformatics, the number of examples is often
small in comparison to the number of attributes
– Not feasible to split the data into separate large training and

test sets
– Use a cross-validation scheme where the alg. is run separately

on different training sets and test sets
• Split the data into a number of folds and repeatedly train on n-1

of the data and test on the last fold
• Repeat for all the other n-1 folds (n-fold cross-validation)
• At each run measure the error
• Average the errors as a measure of accuracy

Multiple decision trees

• Li et al., 2003
– Use a committee of trees to determine the clinical

diagnosis of an individual

– Avoids the deterministic features of the DT algorithm
(top ranked attribute make the split)

1. Build a tree from the best feature

2. Build another tree from the second best feature and so on
up to a stopping point

3. Convert the trees into rules and add them to a knowledge
base

– During classification, use the coverage statistics (number
of individual records covered by the rule) as a measure of
the generality of each rule

– The coverage for each rule that fire is summed for each
class and the class with highest sum is predicted

Consensus method for secondary
structure prediction

• Secondary structure:
– Determines how groups of amino acids form sub-

structures

– Provides vital information as to the tertiary structure and
therefore the function of the protein

• Selbig et al., 1999
– Used DTs to combine predictions of other methods

(DSSP, DEFINE) – meta-classifier

– IF Method1 = Helix AND Method2 = Helix THEN
CONSENSUS = Helix

– Prediction performance at worst the same as the best
prediction method

References

• E. Keedwell, A. Narayanan, Intelligent
bioinformatics: the application of artificial
intelligence techniques to bioinformatics problems.
Chichester : John Wiley, cop. 2005

• S. Russell, P. Norvig, Artificial intelligence: a
modern approach, Prentice-Hall, Upper Saddle
River, New Jersey, 1995

