Greedy search

Torgeir R. Hvidsten

This lecture

» Genome rearrangements
— Sorting by reversals
— Approximation algorithms
— Breakpoints: a different face of greed

» Finding regulatory motifs in DNA Sequences

» Greedy search methods

Genome rearrangements

Turnip vs cabbage:
Look and taste different

Although cabbages and turnips share a recent
common ancestot, they look and taste different

Turnip vs cabbage: Comparing gene sequences
yields no evolutionary information

AACTGGATCATTA) AACTGGATCATTA

AACTGGATCATTA
AACTGGATCATTA

Turnip vs cabbage: Almost identical
mtDNA gene sequences

> In 1980s Jeffrey Palmer studied evolution of plant
organelles by comparing mitochondrial genomes of
the cabbage and turnip

> 99% similarity between genes

» These surprisingly identical gene sequences differed
in gene order

> This study helped pave the way to analyzing genome
rearrangements in molecular evolution

Turnip vs cabbage: Different mtDNA gene order

Gene order comparison:

Turnip vs cabbage: Different mtDNA gene order

Gene order comparison:

Turnip vs cabbage: Different mtDNA gene order

Gene order comparison:

Turnip vs cabbage: Different mtDNA gene order

Gene order comparison:

L,
D-@--

Cabbage

Turnip

Evolution is manifested as the divergence in gene order

Genome rearrangements
Unknown ancestor / -

Mouse ii chrom.i .
~ 75 million years ago \

Human (X chrom.)

»What are the similarity blocks and how can they be
found?

»What is the architectute of the ancestral genome?

»What is the evolutionary scenario for transforming
one genome into the other?

History of chromosome X

o P —p—
FREVERITTTTRIRIE) @ oo b s A .
g 13T TR I
(L1 X
U C LI T b AR
NLLL O] T ﬁ%
FOSTTTRRUARENIE) o, e i
TR 7 LR (CORY I T
CURROLT LY X COLOE LT I 1
L] TR TN L WETHHTTTTH

13111000811 13y AT T .

' 1 .
Rat Consortium, Nature, 2004 ﬂ
Ceial

Reversals

1,2,3, 4,5 6, 7,89,10

Blocks represent conserved genes

Reversals

1,2,3,-8,-7,-6,-5-4,9,10

In the course of evolution, blocks 1,...,10 could be

misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10

Reversals and breakpoints
1 2 3

1,2,3,-8,-7,-6,-5,-4,9, 10

The revetsion introduced two breakpoints X
(disruptions in order)

Reversals: Example

5" ATGCCTGTACTA 3’
3’ TACGGACATGAT 5’

Break
and

Invert 5" ATGTACAGGCTA 3’
3’ TACATGTCCGAT 5’

Types of rearrangements

Reversal

123456 mmmp 125436

Translocation
123 _ 126
45606 453
Fusion
1234) -
123456
56 <= >0

Fission

Comparative genomic architectures:
Mouse vs human genome

» Humans and mice have
similar genomes, but
their genes are ordered
differently

> ~245 rearrangements
— Reversals
— Fusions

— Fissions

— Translocation

Woaardenburg’s syndrome: Mouse provides
insight into human genetic disorder

» Waardenburg’s syndrome is characterized by pigmentary
dysphasia

» Gene implicated in the disease was linked to human
chromosome 2 but it was not clear where exactly it is
located on chromosome 2

Woaardenburg's syndrome and splotch mice

» A breed of mice (with splotch gene) had similar
symptoms caused by the same type of gene as in
humans

» Scientists succeeded in identifying the location of the
gene responsible for disorder in mice

» Finding the gene in mice gives clues to where the same
gene is located in humans by analyzing the relative
architecture of human and mouse genomes

Reversals: Example

2345678
0(3,5) \
4

12

N

3678
0(5,6) \

12543768

Reversals and gene orders

» Gene order is represented by a permutation 7 :

T STy T T T e T T Ty e T,
£))

TPG)) =Ty oo Ty Ty e Ty iy - T,

» Reversal p(s,) reverses (flips) the elements from 7 to j
inrw

Reversal distance problem

» Goal: Given two permutations, find the shortest seties of
reversals that transforms one into another

» Input: Permutations #and &

» Output: A series of reversals p,,...p, transforming Zinto g; such
that #is minimum

» t- reversal distance between zand &
» d(m, 0) - smallest possible value of # given zand o

Sorting by reversals problem

» Goal: Given a permutation, find a shortest seties of
reversals that transforms it into the identity
permutation (7 2 ... #)

» Input: Permutation 77

» Output: A seties of reversals p,, ... p, transforming 7
into the identity permutation such that #is minimum

Sorting by reversals: Example

» t=d(r) - reversal distance of 7

» Example :
T =3421567109¢8
43215 67 1098
43271567 8970
1234567 8910

Sod(m) =3

Sorting by reversals: A greedy algorithm

» When sotting permutation =123 6 4 5, the
first three elements are already in order so it
makes no sense to break them

» The length of the already sorted prefix of 7is
denoted prefix(rr)

— prefix(m) =3
> This results in an idea for a greedy algorithm:
increase prefix(7r) at every step

Greedy algorithm: An example
» Sotting 7:

123645

l

123465

|

123456

» Number of steps to sort permutation of length 7
is at most (n—1)

Greedy Algorithm: Pseudo-code

SimpleReversalSort(7)

1 for i—Tton—-1

2 /< Index of element 7in 7 (.., 7, = J)
3 if j#i

4 w7 pi))

5 output 7

6 if 77is the identity permutation

7 return

Analyzing SimpleReversalSort (1)

>SimpleReversalSort does not guarantee the
smallest number of reversals

» It takes five stepson £=6 1234 5:

—Step1:162345
~Step2: 7126345
—Step3:123645
—Step4: 123465
—Step5:123456

Analyzing SimpleReversalSort (Il)

» But it can be sotted in two steps: Z=6 12345
~Stepl: 543216
~Step2: 123456

» So, SimpleReversalSort(7r) is not optimal

» SimpleReversalSort is not correct (according to the
definition in lecture 1)

» Optimal/correct algorithms are unknown for many
problems; approximation algorithms are used

Approximation algorithms

» These algorithms find approximate solutions
rather than optimal solutions

» The approximation ratio of an algorithm A on
input 7 is:
A(m) / OPT ()
where

A(r) - solution produced by algorithm A
OPT(x) - optimal solution of the problem

Performance guarantee

» Approximation ratio (performance guarantee) of
algorithm A is the maximal approximation ratio
of all inputs of size 7

» For algorithm A that minimizes the objective
function (minimization algorithm):

—max, , -, A(x) / OPT(7)

» For maximization algorithms

—min| , -, A(x) / OPT(7)

Performance guarantee: Example

» SimpleReversalSott is a minimization algorithm
» Performance guarantee:
—max| , -, A(x) / OPT(7)

— We have seen that A() = #-7 for a problem that
could be solved in two steps

— So, the approximation ratio is at least (#-1)/2

Adjacencies

=T 75 Ty 7,
» A pair of elements 7z;and 7, |, ate adjacent if
Ty =7, 21
» For example:
n=193478265
»>(3,4), (7, 8) and (6,5) are adjacent pairs

Breakpoints: An example

» There is a breakpoint between any neighboring
elements that are non-consecutive (not adjacent):

n=1|9|3 4|7 8|2|6 5

» Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form breakpoints
of permutation 77

» b(z) — number of breakpoints in permutation 7

Adjacencies and breakpoints

» An adjacency - a pair of neighboring elements
that are consecutive

» A breakpoint - a pair of neighboting elements
that are not consecutive

Z=562134

Extend 7z with 7, = 0and 7, = 7
adjacencies
05621347

t tot t

breakpoints

Reversal distance and breakpoints

Each reversal eliminates at most 2 breakpoints i.c.
reversal distance = b(x) / 2

t=231465

0123|1146 5|7 () =5
0 1|3.2|4|6 5|7 b(m) =4
0123465|7 b(m) =2
01234567 W) =0

Sorting by reversals: A better greedy algorithm

BreakPointReversalSort(7)

1 while i(z) >0

2 Among all possible reversals, choose reversal
L minimizing b(7 - p)

3 memopi))

4 output 7

5 return

Problem: It is not obvious that this algorithm will
terminate!

Strips

Strip: an interval between two consecutive
breakpoints in a permutation

— Decreasing strip: strip of elements in decreasing
order (e.g. 6 5and 3 2).

— Increasing strip: strip of elements in increasing
order (e.g. 7 8)

— S s =

— A single-element strip can be declared either increasing or
decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and #+7

Reducing the Number of Breakpoints

Theorem 1:

If permutation & contains at least one
decreasing strip, then there exists a reversal p
which decreases the number of breakpoints

(e. b(z-p) < W(7))

10

“Proof”’

Form=14657832
0 1|4\6 5|7 8|3 2|9 bm)=5
— Choose tﬂe‘d_ecreasinéistrip with the smallest
element £ in 7z (£ = 2 in this case)
—Find £— 7 in the permutation
— Reverse the segment between £ and 4-7:
0146578329 Wm)=5
|

0123875649 bm)=4

Reducing the number of
breakpoints again

» If there is no decreasing strip, there may be no
reversal p that reduces the number of
breakpoints

» By reversing an increasing strip (the number of
breakpoints stay unchanged), we will create a
decreasing strip at the next step. Then the number
of breakpoints will be reduced in the next step
(Theorem 1)

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(rr)

1

while () > 0
if 7 has a decreasing strip

Among all possible reversals, choose reversal p
that minimizes b(7 - p)

else
Choose a reversal p that flips an increasing strip in 7
T—7xp
output 7
return

ImprovedBreakpointReversalSort:
Performance guarantee

ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of at most 4

— It eliminates at least one breakpoint in every two
steps; at most 2b(7) steps

— Approximation ratio: 2i(x) / d(r)

— Optimal algorithm eliminates at most 2 breakpoints
in every step: d(z) 2 W(z) / 2

— Performance guarantee:

(2b(x) [d(x)) <[2b(x) / (b(x) [2)] = 4

11

Finding regulatory motifs in
DNA sequences

Implanting motif AAAAAAGGGGGGG
with four random mutations

Where is the motif?

Definitions
t number of sample DNA sequences
7 length of each DNA sequence
DNA sample of DNA sequences (#x # array)
/ length of the motif (/- mer)
5 starting position of an /-mer in sequence 7

§=(s; §5... 5) array of motif starting positions

12

Parameters

‘ DNA .

[! cetgatagacgetatctggetatecacgtacT taggtectetgtgcgaatetatgcgtttecaaccat ;

| agtactggtgtacatttgatCcitacgtacac t gc E

—5 cttcgtggetet e |

gctgtaactattacctgccacccctattacatcttacgtCeAtataca H

e
S

s{s,=26 s,=21,5=3, s5,=56,5,=60]

Scoring motifs: consensus score

}_

»Given s = (5, ... 5)and D. teltactat
acgtTAgt
acgtCcAt

» Score(s,DNA) = cegracos

ZI: (k) A 30103110
maxcount] C 24001400
i=1 ke{AT.C,G} ' G 01400031
T 00051014

Consensus acgtacgt

Score 3+4+4+5+3+4+3+4=30

Greedy motif finding

» Partial score: Score(s, 7, DNA)
— The consensus score for the first / sequences
» Algorithm:
— Find the optimal motif for the two first sequences

— Scan the remaining sequences only once, and choose
the motif with the best contribution to the partial
score

Greedy motif finding

GreedyMotifSearch(DNA, #, n, /)
s—(1,1,..,1)
bestMotif— s
for s, «— 1Tton—/7+1
fors,«—Tton—/+1
if Score(s, 2, DNA) > Score(bestMotif; 2, DNA)
bestMotify — s,
bestMotify < s,

B R N

8 5y <= bestMotif,
9 54— bestMotif,
10 fori«3tor

11 fors,«—Tton—/+1

12 if Score(s, 7, DNA) > Score(bestMotif, i, DNA)
13 bestMotif, < s,

14 54— bestMotif;

15 return bestMotif

13

Running time

» Optimal motif for the two first sequences
— {n— 1 +1)? operations
» The remaining #-2 sequence
—(t=2)[n— ! +17) operations
» Running time
= O + th) ot O(?) if n>> ¢
» Vastly better than
— BruteForceMotifSearch: (# -/ + 1)’
— BruteForceMedianStringSearch: 4/

14

