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Andriy Kryshtafovych,1 Česlovas Venclovas,2 Krzysztof Fidelis,1 and John Moult3*
1Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory Livermore, California
2Institute of Biotechnology, Vilnius, Lithuania
3Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland

ABSTRACT CASP has now completed a decade
of monitoring the state of the art in protein struc-
ture prediction. The quality of structure models
produced in the latest experiment, CASP6, has been
compared with that in earlier CASPs. Significant
although modest progress has again been made in
the fold recognition regime, and cumulatively,
progress in this area is impressive. Models of previ-
ously unknown folds again appear to have modestly
improved, and several mixed �/� structures have
been modeled in a topologically correct manner.
Progress remains hard to detect in high sequence
identity comparative modeling, but server perfor-
mance in this area has moved forward. Proteins
2005;Suppl 7:225–236. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

The CASP experiments have now spanned a period of a
decade, from CASP1 in 1994, to the latest experiment,
CASP6, in 2004. The set of results reflect a decade of
development in protein structure modeling by a large
number of people—over 200 groups from 25 countries
participated in the latest CASP. In this paper, we once
more provide an overview of progress over the full course of
the experiments, with particular emphasis on the last two.
The papers by the three assessors in this special issue of
PROTEINS focus more on the state of the art now.1,2,3 The
analysis methods have mostly been introduced in the
earlier papers.4,5 New analyses of server performance and
improvement of models over single template copying have
been added. Details of the CASP6 experiment can be found
in the introduction to this special issue.6

GENERAL CONSIDERATIONS
Choice of Models to Evaluate

As before, we analyze two aspects of progress—how the
quality of the very best models is improving, and to a lesser
extent, how the quality of models produced in the field as a
whole is advancing. Best performance is evaluated by
comparing the most accurate models of targets of compa-
rable difficulty in different CASPs. Progress in the field as
a whole is evaluated by comparing the average accuracy of
the six best models for a target with the average accuracy
of models in other CASPs for targets of similar difficulty.

Relative Target Difficulty

The difficulty of producing a high quality model of a
target protein depends on a number of factors. As in the
earlier progress assessments, we use a two-dimensional
scale to estimate difficulty, incorporating the similarity of
the protein sequence to that of a protein with known
structure, and the similarity of the structure of the target
protein to potential templates. Some other significant
factors that affect modeling difficulty are not considered,
particularly the number and phylogenetic distribution of
related sequences and the number and structural distribu-
tion of available templates. The set of related sequences
will influence whether or not an evolutionary relationship
can be detected, and also the quality of the alignment that
can be generated. As discussed later, additional templates
may provide models for regions of structure not present in
the single best one. These factors add some noise to the
relationship between model quality and our difficulty
scale.

The difficulty of a target is calculated by comparing it
with every structure in the appropriate release of the
protein databank, using the LGA structure superposition
program.7 For CASP6, templates were taken from the
PDB releases accessible before each target deadline. Tem-
plates for the previous CASPs are the same as those used
in the earlier analyses.5 For each target, the most similar
structure, as determined by LGA, in the appropriate
version of the PDB is chosen as the representative tem-
plate.

Similarity between a target structure and a potential
template is measured as the number of target–template
C� atom pairs that are within 5 Å in the LGA superposi-
tion, irrespective of continuity in the sequence, or se-
quence relatedness. The 5-Å threshold maintains compat-
ibility with earlier target/template comparisons,4,8,9 which
were made using Prosup10 software. It is a little larger
than we now consider most appropriate (3.8 Å), and there

Grant sponsor: the National Institutes of Health; Grant number:
LM07085-01; Grant sponsor: Howard Hughes Medical Institute; Grant
number: HHMI-55000341; Grant sponsor: the Sixth European Commu-
nity Framework Programme; Grant number: MIRG-CT-2004-004543.

*Correspondence to: John Moult, Center for Advanced Research in
Biotechnology, University of Maryland Biotechnology Institute, 9600
Gudelsky Drive, Rockville, MD 20850. E-mail: jmoult@tunc.org

Received 15 May 2005; Accepted 21 June 2005

Published online 26 September 2005 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20740

This article was originally published online as an accepted preprint.
The “Published Online” date corresponds to the preprint version.

PROTEINS: Structure, Function, and Bioinformatics Suppl 7:225–236 (2005)

© 2005 WILEY-LISS, INC.



is some times significant superimposability between unre-
lated structures, particularly for small proteins. Sequence
identity is defined as the fraction of structurally aligned
residues that are identical, maintaining sequence order.
Note that basing sequence identity on structurally equiva-
lent regions will usually yield a higher value than obtained
by sequence comparison alone. In cases where several
templates display comparable structural similarity to the
target (coverage differed by less than 3%), but one has
clearly higher sequence similarity (around 10% or more)
the template with the highest sequence identity was
selected. There are a total of 15 of these in previous
CASPs, and six in CASP6.

Domains

Many target structures consist of two or more structural
domains. Since domains within the same structure may
present modeling problems of different difficulty, assess-
ment in CASPs 4–6 has treated each identifiable domain
as a separate target. Assessors have the advantage of
deriving domains from the experimental structure, whereas
predictors only have the sequence. In any case, domain
definitions are nearly always subjective. For most of the
analysis, we subdivide comparative modeling and fold
recognition targets into domains only if these divisions are
likely identifiable by a predictor, and require different
modeling approaches (i.e., belong to different difficulty
categories), or the domains are sequentially related to
different templates. There are six such targets in CASP6,
seven in CASP5, three in CASP4, and one each in CASPs 2
and 3. For evaluation of nontemplate based models (the
FR/A and NF target categories) and some server compari-
sons, all domains identified by the assessors are treated as
separate targets.

TARGET DIFFICULTY ANALYSIS

Figure 1 shows the distribution of target difficulty for all
CASPs, as a function of structure and sequence similarity
between the experimental structure of each target and the
corresponding best available template. Targets span a
wide range of structure and sequence similarity in all the
CASPs. There are a few very high sequence identity
targets (greater than � 50% ID), and these all have high
superposability with the best template. At lower identi-
ties, superposability varies between 80 and 100% for
targets with greater than 30% sequence ID to a template,
and is some times as low as 55% for those between 20 and
30% sequence ID. Below 20% ID, superposability may fall
below 50%, even for targets, which are evolutionarily
related to a template. As discussed later, low superposabil-
ity often places a limit on the quality of a model. In
general, the distribution of difficulty is similar for all the
CASPs. Figure 1(B) shows the difficulty distribution for
only CASPs 5 and 6, with individual CASP6 targets/
domains labeled. The distributions are similar, with 71
targets included in CASP6 and 62 in CASP5.

For most analysis purposes, it is more convenient to use
a one dimensional scale of target difficulty, though this
does result in some loss of resolution. As in the previous

analysis, we project the data in Figure 1 into one dimen-
sion, using the following relationship:

Relative Difficulty �

(RANK_STR_ALN � RANK_SEQ_ID)/2,

where RANK_STR_ALN is the rank of the target along the
horizontal axis of Figure 1 (i.e., ranking by percent of the
template structure aligned to the target), and RANK_SE-
Q_ID is the rank along the vertical axis (ranking by
percent sequence identity in the structurally aligned re-
gions). For the CASP6 analysis, we experimented with 15
alternative definitions of difficulty based on both ranking
and absolute value schemes. Some placed more weight on
sequence identity in high sequence ID cases and more
weight on structural similarity for low sequence ID cases.
Alternative difficulty scales were assessed by the correla-
tion between difficulty and the quality of the correspond-
ing best model. In spite of considerable effort put into
development of alternative scales, the original difficulty
scheme proved best, and so was retained.

For assessment, CASP targets are divided into three
categories of relative difficulty: comparative modeling
(CM), fold recognition (FR), and new folds (NF).11 Compara-
tive modeling is subdivided into CM easy (those targets
where a structural template can be identified by a BLAST
search) and CM hard (the rest). Fold recognition is divided
into FR/H: “homologous” (those cases where target and
template are similar because of a common ancestor) and
FR/A: “analogous” (where target and template are similar,
but for which there is no evidence of a common ancestor).
These regimes approximately map to the one-dimensional
difficulty scale, with comparative modeling the easiest,
fold recognition in the intermediate difficulty range, and
new fold targets the hardest. However, there is some
reordering.

OVER-ALL MODEL QUALITY

Evaluating the quality of approximate models is not
simple, and a number of new measures have been intro-
duced in CASP. One of the most useful is GDT_TS.12 The
GDT_TS value of a model is determined as follows. A large
sample of possible structure superpositions of the model on
the corresponding experimental structure is generated by
superposing all sets of three, five, and seven consecutive
C� atoms along the backbone (each peptide segment
provides one superposition). Each of these initial superpo-
sitions is iteratively extended, including all residue pairs
under a specified threshold in the next iteration, and
continuing until there is no change in included residues.7

The procedure is carried out using thresholds of 1, 2, 4, and
8 Å, and the final superposition that includes the maxi-
mum number of residues is selected for each threshold.
Superimposed residues are not required to be continuous
in the sequence, nor is there necessarily any relationship
between the sets of residues superimposed at different
thresholds. GDT_TS is then obtained by averaging over
the four superposition scores for the different thresholds:

GDT_TS � 1/4[N1 � N2 � N4 � N8],
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where Nn is the number of residues superimposed under a
distance threshold of “n” Å. GDT_TS may be thought of as
an approximation of the area under the curve of accuracy
versus the fraction of the structure included. Different
thresholds play different roles in different modeling re-
gimes. For relatively accurate comparative models, almost
all residues will likely fall under the 8-Å cutoff, and many

will be under 4 Å, so that the 1–2 Å thresholds capture
most of the variations in model quality. In the new fold
regime, on the other hand, few residues fall under the 1–2
Å thresholds, and the larger thresholds capture most of the
variation between models. In the intermediate fold recogni-
tion regime, all four thresholds will often play a significant
role. It is this shift across thresholds that makes the

Fig. 1. Distribution of target difficulty. The difficulty of producing an accurate model is shown as function of
the fraction of each target that can be superimposed on a known structure (horizontal axis) and the sequence
identity between target and template for the superimposed portion (vertical axis). In all CASPs, targets span a
wide range of difficulty. A: All CASPs. B: CASPs 5 and 6 only. CASP 6 targets are labeled.
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GDT_TS measure useful (though not perfect) across a wide
range of modeling accuracy.

In the new fold regime models are often very approxi-
mate. In recent CASPs the assessors have found GDT_TS
a useful measure for identifying interesting models, but
have occasionally visually identified an alternative high-
est quality model to that found by GDT_TS. In the
comparative modeling regime, accuracy improvements are
likely to be relatively small-scale. The CASP6 comparative
modeling assessors have introduced a finer grained mea-
sure, GDT_TL, where the thresholds are 0.25, 0.5, 1, and 2
Å.

Figure 2(A) shows the GDT_TS scores for the best model
on each target, for all CASPs, with each point an average

over five targets. Quadratic splines have been fitted through
the data for each CASP.

A perfect model would not be expected to have a GDT_TS
score of 100, since there are errors in the experimental
structures. For high sequence ID (� 30%) targets, only
X-ray crystallographic structures have been used for evalu-
ation of model quality. Errors in the core of X-ray struc-
tures are small, typically a few tenths of an Ångstrom,13

but there may be systematic differences from the solution
conformation, caused by the crystal environment. These
effects are some times invoked to justify imperfect models.
In spite of these factors, the easiest comparative modeling
targets (at far left) do consistently score better than 90 on
the GDT_TS scale. These have sequence identities of 50%

Fig. 2. GDT_TS scores for models for targets in all CASPs. Data are smoothed by averaging over sets of
consecutive targets in each CASP. A: shows the scores for the best models on each target. B: the average
score over the top six models from different groups. Trend lines show a clear—though some times modest
improvement—from each successive CASP to the next, for both the best models and the best sets of models.
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or more to an available template, and usually a high
degree of structure superposability (see Fig. 1). The task of
modeling structure from sequence will be complete when
almost all models score better than 90, irrespective of
target difficulty. It is clear that there is still a long way to
go to reach that goal.

Nevertheless, there has been very substantial and con-
sistent progress over the CASPs, with the trend line for
each experiment higher than the previous one. Progress is
clearest in the mid-range of target difficulty. Here, the best
GDT_TS scores have doubled from about 30 in CASP1 to
60 in CASP6. According to GDT_TS there is little apparent
progress for the closest evolutionary relationships (com-
parative models at the left hand side of the plot). The more
sensitive GDT_TL measure does show a slight improve-
ment between CASP5 and CASP6.1 GDT_TS is also not
optimal for assessing new fold models (far right), and we
return to analysis of these later.

Figure 2(B) shows the smoothed average GDT_TS val-
ues over the six best models from different groups, rather
than the single best. There is a similar improvement trend
across the mid-range of target difficulty, although here the
change from CASP5 to CASP6 is more modest.

ALIGNMENT ACCURACY

For models based on an evolutionary relationship, correct
alignment of the target sequence onto available template
structures is a critical and often demanding step. As in
previous analyses, we measure alignment accuracy (AL0) by
counting the number of correctly aligned residues in the LGA
5 Å superposition of the modeled and experimental struc-

tures of a target. A model residue is considered to be correctly
aligned if the C� atom falls within 3.8 Å of the corresponding
atom in the experimental structure, and there is no other
experimental structure C� atom nearer.

Figure 3 shows the smoothed alignment accuracy for the
best models of each target in all the CASPs. Alignment
accuracy is near 100% for the easiest targets, but falls
steadily with target difficulty. The spline fits show a
steady improvement in alignment accuracy over the CASPs,
again most noticeable in the mid-range of target difficulty.
It is most dramatic from CASP1 to CASP2, but has
continued steadily thereafter. The plots show a similar
dependence on target difficulty as for GTD_TS [Fig. 2(A)].
As discussed below, alignment accuracy is only one of two
factors contributing to this similarity.

ALIGNMENT ACCURACY RELATIVE TO
TEMPLATE IMPOSED LIMITS

The fraction of residues that can be aligned is limited by
the fraction of superimposable residues between the target
and template structures. Values above that may be ob-
tained by the use of additional templates, where these
contribute new information, and by free modeling of
additional features, such as loops and secondary structure
elements. We define the maximum alignability with re-
spect to the best single template as follows: We first find all
target C� atoms that are within 3.8 Å of any template C�
atom in the 5-Å LGA sequence-independent superposition.
Then, we use a dynamic programming procedure that
determines the longest alignment between the two struc-
tures using these preselected atoms, in such a way that no

Fig. 3. Percent of residues correctly aligned for the best model of each target in all CASPs, smoothed by
averaging over sets of five adjacent targets. Trend lines here follow those in the equivalent GDT_TS plot (Fig.
2) indicating that for many targets, alignment accuracy, together with the fraction of residues that can be
aligned to a single template, dominate model quality.
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atom is taken twice and all the atoms in the alignment are
in the order of the sequence. The maximum alignability is
then the fraction of target C� atoms in this alignment.

Figure 4(A) shows the smoothed alignment accuracy for
the best models of all targets in CASPs 5 and 6 [a subset of

the data in Fig. 3], together with the smoothed maximum
alignability. Alignability falls steadily and approximately
linearly with increasing target difficulty, but with a smaller
slope than that of the fall-off in alignment accuracy. In the
mid-range of difficulty, best model alignments are typi-

Fig. 4. A: Smoothed alignment accuracy and smoothed maximum alignability as a function of target
difficulty. Targets for CASPs 5 and 6 are shown. Maximum alignability is defined as the fraction of equivalent
residues in a superposition of the target and best template structures. The fraction of this theoretical maximum
that is successfully aligned falls steadily with target difficulty. Residues that cannot be aligned to the best
template must either be obtained from additional templates, if available, or modeled using template free
methods. B: Alignment accuracy for the best model of each target in all CASPs, expressed as percent of the
maximum number residues that can be aligned by copying from the closest available template structure.
Targets are ordered by sequence identity between the target and the closest template. An alignment of 100%
indicates that all residues with an equivalent in the template were correctly aligned. A value greater than 100%
indicates an improvement in model quality beyond that obtained by copying a template structure. Above 30%
sequence identity most, but not all, best models are perfectly aligned to the template. Trend lines show a steady
though some times modest improvement over successive CASPs.



cally within 20% of optimum, but up to 40% of the
structure cannot be aligned at all.

Figure 4(B) shows the alignment accuracy for all CASPs,
as a percent of the maximum alignability. Log fits to the
data for each CASP are also shown. Targets are ordered by
the sequence identity between the target and best avail-
able template. In all CASPs, the majority of targets with
greater than 30% sequence identity to a template have all
possible residues correctly aligned. The curves show steady
progress over the CASPs, with the smallest increment
between CASP5 and CASP6. Closer inspection shows that
for the first time in CASP6 there are a few targets at low
sequence identity that have a higher fraction of the
residues aligned than is possible from a single template.

FEATURES OF MODELS NOT AVAILABLE FROM
A SINGLE BEST TEMPLATE

As noted earlier, not all residues can be modeled by
copying from a single evolutionary related structure. It is
of interest to ask whether models contain features not
available from a single template. Additional features may
be added in three ways: by refining aligned regions away
from a template structure towards the experimental one
(requiring adjustments of up to about 4 Å), by the use of
template-free modeling methods, and by the identification
of features that are present in other available template
structures. We searched for these “added value” features
using an error difference function, ��:

��i � �i(model) � �i(template),

where �i(model) is the error in the model for the C� atom of
residue “i,” and �i(template) is the distance between the
template and target C� atoms of residue “i” (the error in a
correctly aligned template-based model at that position).
Inter-C� distances are taken from the LGA sequence-
independent superposition of target and template. Nega-
tive �� values represent regions of a model that are more
accurate than could be obtained by simply correctly align-
ing the single best template.

In general, there is no sign of model improvement by
refinement, but occasional utilization of additional tem-
plates and limited free modeling is evident.

Figure 5 shows results for the CASP6 comparative
modeling target 199_1. The red curve shows the error in
the model, �i(model), and the green curve, the “error” in the
template, �i(template). The blue curve shows the differ-
ence, ��i. In most regions, the two error curves are similar,
and the model has the accuracy obtained by simply
copying the template. Two regions, residues 34 to 50 and
80 to 86, are significantly more accurate than can be
obtained from the best template. The lower panel shows
where the six best templates provide a model for which
residues. In this case, multiple templates are available for
much of this winged helix structure, and in particular,
provide additional information in the two improved re-
gions. The best model likely incorporates information from

Fig. 5. An example of Improvements in a model over copying from a single best template, CASP6 comparative modeling target 199_1. The red curve
shows the error in the model, �i(model), and the green curve, the “error” in the template, �i(template). The blue curve shows the difference, ��i. In most
regions, the two error curves are similar, and the model has the accuracy obtained by simply copying the template (��i close to zero). Two regions,
residues 34 to 50 and 80 to 86, are significantly more accurate than can be obtained from the best template. The lower panel shows where the six best
templates (best one postitioned lowest) provide a model for which residues. It can be seen that extra information is provided by several templates in
these regions.
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one or more additional templates. There are other ex-
amples, indicating that current methods are at least some
times able to successfully combine multiple templates.

Some small features, particularly loops between second-
ary structure elements in comparative models, are built
moderately accurately by template-free methods. An ex-
ample is two loops in CASP6 target 266. As noted earlier,
there are also a few examples of larger features modeled in
this way, such as a helix in target 205.

SERVER PERFORMANCE

Human prediction teams often start with models gener-
ated by publicly available servers. Thus, overall progress
in server performance has an immediate effect on the art of
protein structure prediction in general. In addition, serv-
ers are the only option for high-throughput modeling, so
their performance is independently important. We have
examined server predictions in CASPs 5 and 6, comparing
them to the corresponding human predictions. Approxi-
mately the same number of structure prediction servers
participated in CASP5 and CASP6 (53 and 50 respectively)
making the two sets of data comparable.

Figure 6(A) shows how many server models were among
the “best six” for three categories of target difficulty. For
“easy” CM targets (CMe, those where a template can be
detected with BLAST), the percent of server models has
risen by about a factor of two, to the same level as in the
other categories (� 20%). In contrast to this, CASP6 server
performance in the other two categories has slipped slightly
compared to humans, relative to CASP5. Figure 6(B)
shows the number of targets with at least one server
among the best six models and the number of server
groups with at least one model in a top six set, for the easy
comparative modeling targets. By these measures too, it is
clear that relative server performance has improved for
this class of targets. These analyses are made on all
assessor-defined domains.

Figure 6(C) shows the ratio of the quality of best
server models to best human models as a function of
target difficulty, for CASPs 5 and 6, as measured by
GDT_TS. By this measure, it is again clear that there
has been an improvement in the relative performance of
servers for comparative models, while in other areas,
they are less competitive. “Predictor” domains were
used for this figure.

Overall, servers provided the best models (or tied with
humans) for 7% of targets in both CASP5 and CASP6.

TEMPLATE FREE METHODS

For “new fold” targets, and most targets judged to be
similar to a known fold because of convergence rather than
an evolutionary relationship (“FR/A” targets), template
free modeling methods are required. Different factors
affect the quality of model in this category. In early
CASPs, structures with a high fraction of � structure were
more difficult to model than those that were mostly
�-helical, though this problem has now largely been solved.
Other factors are contact order (how local the contacts in
the experimental structure are, see Bonneau et al.14),
domain structure, and size.

Because of the lower accuracy of these models, differ-
ent evaluation methods are required. In earlier analy-
ses, we used the extent of sequence-dependent structure
superposition to measure model quality, considering the
four terms that contribute to the GDT_TS measure,
rather than just that single value. That is, the number of
residues which can be superimposed under 1, 2, 4 and 8
Å. Although most observers felt there was progress
between CASP4 and CASP5, it was difficult to detect by
this measure. We have used the same measure again,
and added a second: the fraction of superposed residues
between the model and the target, in a structure indepen-
dent superposition. This measure still requires that
superposed residues be in sequence order, and so will
not capture approximate topology features that may be
visually pleasing. For example, the �-sheet in the best
GDT_TS model of CASP6 target 201 has all strands
superposed onto target structure strands, but there is

Fig. 6. A: Percent of server predictions among the “best six models”
for three categories of target difficulty in CASPs 5 and 6. Relative server
performance improved for easy comparative models. (CM: comparative
models, e: easy, h: hard; FR/H: homologous fold recognition; FR/A:
analogous fold recognition; NF: new folds). B: Percent of easy compara-
tive modeling targets for which at least one server is among the top six
best models, and percent of server groups having at least one model in a
top six set. By these measures too it is clear that there has been an
improvement in relative server performance for this class of target. C:
Ratio of the quality of best server models to best human models as a
function of target difficulty, for CASPs 5 and 6, as measured by GDT_TS,
averaging over five adjacent points. By this measure, there is a small
improvement in the relative performance of servers for comparative
models, while in other areas, server models are less competitive.
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an error in the strand order. We have also added best fit
“trend lines” to the analysis, allowing smaller differ-
ences in performance to be seen. As in the earlier
analyses, all domains identified by the assessors are
treated as separate targets. Domains which are unam-
biguously new folds (NF targets) and domains in the
analogous fold recognition category (FR/A) are included,
providing a total of 23 targets in CASP5 and 25 in
CASP6. The FR/A targets are considered since any
relationship to a known fold is usually too weak for
template-based modeling to be very effective.

Figure 7 shows the results of the GDT threshold analy-
sis for CASPs 5 and 6. Targets are ordered by size. Fold

type is indicated by the usual Greek letter classification.
The stacked bars show the number of residues superim-
posed under the distance thresholds of 1, 2, 4, and 8 Å, i.e.,
the number of residues for which the largest error is less
than or equal to each threshold. The RMS error on such a
set is typically about half the threshold, thus substruc-
tures meeting the 8-Å threshold would usually be judged
excellent by visual inspection.

In Figure 7(A), the performance in terms of the best
models for each target is shown, and in Figure 7(B), the
performance averaging over the six best models for each
target. A convenient way of comparing model quality in
each CASP is to examine the number of targets for which

Fig. 7. Model quality for the best (A) and averaged over the six best (B) “new fold” category targets, for CASPs 5 and 6 for each target. The lowest
bars show the number of residues superimposed between model and target to closer than 1 Å, the next bar, the number superimposed to 2 Å, then 4 Å,
then 8 Å. The open bars show number of residues superimposed to greater than 8 Å. Greek letters indicate the fold type. Targets in each CASP are
ordered by size. Bars for residues under 8Å are colored orange for CASP6 and green for CASP5.
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more than 40 residues are closer than 4 Å and the number
for which 60 residues are closer than 8 Å. For the best
models, 17 out of 25 CASP6 targets meet the 40 residues
under 4-Å criterion, versus 15 out of 23 in CASP5. For 60
residues under 8 Å the numbers are: 18 out of 21 in CASP6
versus 15 out of 17 in CASP5. The numbers are similarly
close for the average over the six best models. Overall, as
between CASP4 and CASP5,5 there is no clear difference
between CASPs 5 and 6 by this measure.

Figure 8(A) shows the number of residues falling under
the GDT4 and GDT8 thresholds for CASPs 5 and 6, as a
function of target size, together with quadratic spline fits.
There is no apparent progress for the 8-Å threshold, and
very slight improvement for the 4 Å one. Figure 8(B) is a
similar plot, using the sequence independent EQV5_I
measure (all target residues within 3.8 Å of a model
residue, in sequence order), instead of a GDT threshold.
No progress is apparent between CASP5 and CASP6 by
this measure.

Over-all, both measures show at most only very marginal
progress. Yet, visual inspection suggests there is more
progress. Targets 198, 201, 215, 248 domain 2, and 281 have

very impressive looking models, and they include structures
with a substantial portion of � structure, often problematic in
previous CASPs. Target 281 is particularly noteworthy.
There is an analogous fold, and the best model (apparently
obtained by template-free methods) has a substantially more
accurate structure than the template would provide.

As noted earlier, all assessors in this modeling regime
have occasionally overridden GDT_TS in choosing a best
model. It appears we are still lacking an adequate measure
of quality for these more approximate models.

ANALYSIS OF SUSTAINED PERFORMANCE
FOR NEW FOLD TARGETS

With so few new fold targets having reasonable models, it
is appropriate to ask to what extent particular groups are
performing consistently, as opposed to groups occasionally
getting lucky, and happening to produce the best score for a
target. As before, we address that by comparing the distribu-
tion of success of individual groups with the distribution of
success expected by chance. Success is measured as the
number of targets for which a group had a model ranking
among the top six. The chance distribution was generated
by randomly choosing six groups as the best scoring for
each target. The chance distribution was constrained so
that only groups predicting on that target were in-
cluded, and the draw was weighted by the number of
models submitted. For example, a group submitting four
models was four times as likely to be selected as one
submitting a single model for a particular target.

Figure 9 shows these data for the 23 CASP5 targets and
25 CASP6 targets. Also shown is information on how many
groups submitted models for different number of targets.
The blue bars show the number of prediction groups
submitting predictions on at least 1, 2, 3,. . . up to the
maximum number of targets in each CASP. The yellow
bars show the probability of a group scoring among the top
six for one target, two targets, three targets, and so on, if
the results were random. The red bars show the number of
groups actually falling among the top six for one target,
two targets, and so on. The more different this distribution
is from random, the more significant the results. In both
CASPs, ranking in the top six for a single target has no
significance, and ranking among the top six for two or
three targets, little significance. For CASP5, there are
three groups well separated from random, ranking for 8,
11, and 16 targets. There are also two groups ranking for
six targets. In CASP6, there are three groups with six
top-ranked predictions, already very significantly more
than random, and also single groups top-ranked for 7, 8, 9,
10, and 13 targets. Thus, by this measure, there has been
an improvement in sustained performance between CASP5
and CASP6.

CONCLUSIONS

The general picture that emerges from this analysis is
very similar to that for the previous two CASPs: There is
steady but modest progress in difficult comparative model-
ing and homologous fold recognition, in terms of the extent
of sequence-dependent superposition between model and

Fig. 8. A: Number of residues falling under the GDT_4 and GDT_8
thresholds for the best models of each “new fold” category target in
CASPs 5 and 6, as a function of target size. The 8-Å trend line shows no
apparent progress, but there is a very slight improvement for the 4-Å one.
B: Number of model and target residues superposed in a sequence
independent superposition for the best models of each “new fold”
category target in CASPs 5 and 6, as a function of target size (EQV5_I: all
target residues within 3.8 Å of a model residue in the LGA alignment,
using a 5-Å sequence-independent superposition). No progress is
apparent.
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target (as measured by GTD_TS), and in alignment accu-
racy. Scores for both measures have approximately doubled
from CASP1 to CASP6, and another decade of this level of
progress would result in excellent models.

For models such as these, based on an evolutionary
relationship, accuracy is dominated by three factors. First,
parts of the structure correctly aligned with a template
will have errors of up to a few Ångstroms, because of
differences in main-chain conformation.15 These errors are
the smallest, but their reduction will require the introduc-
tion of all-atom refinement methods. It is also likely that
this problem must be solved before fully accurate align-
ments can be obtained, since the information that deter-
mines how segments of a protein interact is contained in
the detailed atomic interactions and packing, not repre-
sented in the current approximate models. This problem is
common to the other areas of modeling, and is discussed
further below.

Second, for targets in the mid-range of difficulty, a
significant fraction of residues will usually be misaligned,

introducing larger errors. Alignment accuracy is strongly
influenced by the amount of relevant structure and se-
quence information available for a target, and it is not
clear to what extent the improvements over the CASPs
have been due to greater quantities of data, and to what
extent from real methodological improvements. As men-
tioned earlier, the impact of these factors is not considered
in our difficulty scale. Even if most progress can be
ascribed to the availability of more data, it should not be
regarded as a minor achievement. Utilization of multiple
sequences has required the development of sophisticated
new methods.16–20 Similarly, making effective use of
structural information to detect remote homologs and to
improve alignments has been possible because of the
implementation of a range of methods.21–28

Third, the more remote the evolutionary relationship, the
smaller the fraction of residues that can be superimposed on
a single template. For mid-range difficulty targets, a lot of the
model deficiencies are due to this factor, so that a different
sort of progress will be required from now on. There are two

Fig. 9. Distribution of success in predicting “new fold” targets for individual groups in CASP5 (A) and CASP6 (B), compared with that expected by
chance. Left-hand panels (green bars) show the number of groups submitting predictions for at least 1, 2,. . . up to the maximum number of targets in
each of these CASPs. In the right panels, red bars show the number of groups ranked in the top six for one target, two targets, and so on. Yellow bars
show the distribution of ranking expected by chance. In CASP5, three groups did very significantly better than chance, and a further four groups are in the
tail of the chance distribution. In CASP6, there are three groups with six top-ranked predictions, already very significantly more than random, and also
single groups top-ranked for 7, 8, 9, and 13 targets. Thus, by this measure, there has been significant improvement in sustained performance between
CASP5 and CASP6.
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ways in which the remaining residues may be modeled. First,
other templates may contain some of the missing features. It
is encouraging that the analysis shows clear examples of
secondary template information being successfully captured
in CASP6. Second, template-free modeling methods may be
used to add structural features beyond those present in
templates. This is occasionally detectable, for example, in
CASP6 target 205, where a helix not present in any template
was modeled, although in a different orientation to that
found in the target. Given the steady improvement in tem-
plate-free methods, we may expect to see progress on this
basis in future.

Visual inspection suggests progress in template-free mod-
eling for small targets, but the analysis only very weakly
supports that conclusion. There is also evidence of sustained
performance by more prediction groups. The quality of
models for large targets remains generally very poor. One of
the difficulties in this area is identifying domains in a
structure. Assessment of domain identification in CASP629

shows that this is far from a solved problem. Modelers also
report that for small targets, accurate models are often
generated, but cannot be distinguished from less accurate
ones. The absence of a reliable scoring function for discrimi-
nating between more and less accurate models is an obstacle
to progress. As with obtaining accurate alignments, it is
likely that successful discrimination will require refinement
of each model at atomic resolution, since only then will the
interactions that determine the relative free energy of each
conformation be included.

Once more, by the measures used here, there is disappoint-
ingly little change in high-sequence-identity comparative-
model quality. The basic difficulty is the absence of effective
refinement techniques—the analysis shows that at 30% or
higher sequence identity, most of the best models already
have accurate alignments. Side-chain accuracy is closely
coupled to main-chain accuracy,30 and so is unlikely to
improve further without full refinement. Similarly, one of the
major limitations on free modeling of loops is the error in the
surrounding structure.31 Much attention is now focused on
the problem of refinement of comparative models, and there
are some encouraging signs outside of CASP, so maybe
things will be better in the next experiment.
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