
Exercise 2
Deadlines: Friday 2008.09.19 (copy) and Friday 2008.09.26 (corrected)

PROBLEM 1

Suppose you have a maximization algorithm, A, that has an approximation ratio of ¼.
When run on some input π, A(π) =12. What can you say about the true (correct) answer
OPT = OPT(π)?

1. OPT ≥ 3
2. OPT ≤ 3
3. OPT ≥ 12
4. OPT ≤ 12
5. OPT ≥ 48
6. OPT ≤ 48

What if A is a minimization algorithm? (Hint: This is a trick question)

PROBLEM 2

a) Perform the ImprovedBreakpointReversalSort algorithm (below) with π = 3 4 6 5 8 1
7 2 (Remember to start with 0 3 4 6 5 8 1 7 2 9).

b) The if-test in line 2 ensures that the algorithm never gets stuck in a situation were
there is no reversal that decrease the number of breakpoints. Can you construct a
permutation σ where this if-test is needed (i.e. with no decreasing strips and no reversal
that reduces the number of breakpoints)?

c) Since this is an approximation algorithm, there might be a sequence of reversals that is
shorter than the one found by ImprovedBreakpointReversalSort. Can you construct a
permutation σ for which this is the case?

ImprovedBreakpointReversalSort(π)
1 while b(π) > 0
2 if π has a decreasing strip
3 Among all possible reversals, choose reversal ρ that minimizes b(π·ρ)
4 else
5 Choose a reversal ρ that flips an increasing strip in π
6 π ← π ·ρ
7 output π
8 return

PROBLEM 3

The pseudo-code for ImprovedBreakpointReversalSort above leaves out a number of
implementation details. Write subroutines that in detail perform the tasks of

a) line 2,

b) line 3,
c) line 5, and
d) line 6.

You may assume that the operation b(π) is available to you (i.e. you don’t have to
implement it). Also, note that you will implement the operation π ·ρ in d), so you don’t
have to implement it when solving a), b) and c).

PROBLEM 4

a) The GreedyMotifSearch algorithm below may miss a strong pattern because of its
greedy nature. Design an input for GreedyMotifSearch that causes the algorithm to
output an incorrect answer.

b) The popular CONSENSUS motif finding software is basically an implementation of
GreedyMotifSearch. One important difference is that CONSENSUS can scan the
sequences in a random order. Design a strategy that utilizes this feature to make it less
likely that the algorithm outputs an incorrect answer. Would this strategy stop the
algorithm from outputting the wrong answer for the input you designed in a)?

c) Another difference between GreedyMotifSearch and CONSENSUS is that the latter
saves the 1000 best motifs from the two first sequences. Rewrite GreedyMotifSearch to
include this feature. Does this make the algorithm correct (in the strict sense: for every
possible input the algorithm will output the correct answer)?

GreedyMotifSearch(DNA, t, n, l)
1 s ← (1,1, …, 1)
2 bestMotif ← s
3 for s1 ← 1 to n – l + 1
4 for s2 ← 1 to n – l + 1
5 if Score(s, 2, DNA) > Score(bestMotif, 2, DNA)
6 bestMotif1 ← s1
7 bestMotif2 ← s2
8 s1 ← bestMotif1
9 s2 ← bestMotif2
10 for i ← 3 to t
11 for si ← 1 to n – l + 1
12 if Score(s, i, DNA) > Score(bestMotif, i, DNA)
13 bestMotifi ← si
14 si ← bestMotifi
15 return bestMotif

