
5/11/2010

1

Lecture 2

Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umeå Plant Science Center (UPSC)

Computational Life Science Centre (CLiC)

This lecture

• Go through Lab 1
• Introduction to Perl 2

– hashes
– data structures
– subroutines and modules
– references

days

Mon Tue Wed Thu

$today

Mon

The three fundamental datatypes in Perl

Scalar Array Hash

• The sigills $,@,% must always be used.
• You can use different datatypes with the same name in the same program.

55

1212 20201717

2

7
Andersson Pettersson

Jag
Simpson

FlintVasa

Adams

Arrays to look up addresses on the same street

2424
1212 2020

3838 3232 2727
Persson

RheinfeltBush

undef undef "Flint" undef undef "Vasa" undef "Adams"@owners_on_easy:

Easy St.

...
0 1 2 3 4 5 6 7

SmithSmith

MackMackAdams

14 Easy St. 42 Easy St.

15 Main St. What about
multiple streets?

BushBushFlint

Vasa

37 Main St. 32 Main St.

44 Main St.

Owners Dogs

5/11/2010

2

Hashing

• Hash algorithms convert strings of any length into
reasonably small numbers; these numbers may be used
to index an array.

• The same string must always give the same hash, but
different strings can give the same hash. This is called
a collision and is handled by Perl in a way that isa collision and is handled by Perl in a way that is
invisible to you.

• Well-mixed hash-functions
don't preserve the similarity
of their input. Hash functions
do not sort their input.

Perl hashes
• Hashes hold multiple, unordered pairs of keys and values. Each is a scalar.

• Hashes are written with a leading %, like: %favorite_color

• Hashes can be initialized by lists of keys and values using the "Big Arrow"
=> :
my %favorite_color = (dave => 'green', jim => 'blue', fred => 'red');

• Hashes are indexed by their keys. Notice the curly brackets!
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
print "Daves favorite color is $fc{dave}\n";
Daves favorite color is green

• Each key in a hash must be unique! Reuse of a key causes reassignment:
my %fc = (dave => 'green', dave => 'blue');
print "Daves fave color is $fc{dave}\n";
Daves favorite color is blue

Accessing Hashes and
Hash Slices

%days
• You access hashes by key in curly brackets:

my $fave = “Fri”;
my ($today,$tomorrow,$favorite) = ($days{Mon},$days{Tue},$days{$fave});
print "$today $tomorrow $favorite\n";
Monday Tuesday Friday

• You can access a slice of a hash by a list:
my ($today,$tomorrow,$favorite) = @days{"Mon","Tue",$fave};
print "$today $tomorrow $favorite\n";
Monday Tuesday Friday

Iterating over hashes

• The keys function is the most common way to iterate over a
hash:
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}}
jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

• The each function is less common, returning key-value pairs
while (my ($key, $value) = each %fc) {

print "$key\'s favorite color is $value\n";
}

Iterating over hashes

• Sorting by keys
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (sort keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}
dave's favorite color is green
fred's favorite color is redfred s favorite color is red
jim's favorite color is blue

• Sorting by value:
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (sort {$fc{$a} cmp $fc{$b}} keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}
jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

Existence and definedness

Use exists to check for the presence of a key in a hash, not defined

my %age;
$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

foreach my $thing ("Toddler", "Unborn", "Phantasm", "Relic") {
print "$thing: ";
print "Exists " if exists $age{$thing};
print "Defined " if defined $age{$thing};
print "\n";

}
Toddler: Exists Defined
Unborn: Exists Defined
Phantasm: Exists
Relic:

5/11/2010

3

Hashes as sets
• The uniqueness of keys in hashes make hashes useful models

of sets, and you can easily do set operations on hashes:

my %hash1 = (a => 1, b => 1, d => 1);
my %hash2 = (a => 1, c => 1, d => 1);

my @common = ();
foreach (keys %hash1) {

push @common, $_ if exists $hash2{$_};
}
print "@common\n";
a d

• Write pseudo-code that solves the same problem with arrays!

Nested data structures

• Scalars, arrays and hashes are not enough! We want to nest
data structures to create e.g. tables (arrays of arrays).

• Perl cannot do arrays of arrays, however, it can do arrays of
references to arrays:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \@players;my $ref = \@players;

• References are scalars that point to an address in memory
print "$ref\n";
ARRAY(0x23affd4)

• Accessing values from references is called dereferencing.
print "$ref->[2]\n";
Inzaghi
print "@$ref\n";
Maldini Giggs Inzaghi

References

• This:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \@players;
is equivalent to this:
my $ref = ["Maldini" "Giggs" "Inzaghi"];my $ref [Maldini , Giggs , Inzaghi];

• And this:
my %players = (Maldini => 1, Giggs => 1, Inzaghi => 1);
my $ref = \%players;
is equivalent to this
my $ref = {Maldini => 1, Giggs => 1, Inzaghi => 1};

• $ref is called an anonymous array or hash.

Reading a table from file

my @tab;

open (T, "tab.txt");
while (<T>) {

chomp;
my @row = split /\s/;
push @tab \@row;push @tab, \@row;

}
close (T);

print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{$tab[2]}\n";
7.0
7.0
5.0 6.0 9.0

Reading a table from file
stored as a hash of arrays

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {
chomp;
my @row = split /\s/;
my $player = shift @row;y p y
$ratings{$player} = \@row;

}
close (T);

print "$ratings{Maldini}->[1]\n";
print "$ratings{Maldini}[1]\n";
print "@{$ratings{Inzaghi}}\n";
7.0
7.0
5.0 6.0 9.0

Reading a table from file
stored as a hash of hashes

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {

chomp;
my @row = split /\s/;
my $player = $row[0];
for (1..$#row) {

$ratings{$player}{$teams[$]} = $row[$];$ratings{$player}{$teams[$_]} $row[$_];
}

}
close (T);

print "$ratings{Maldini}->{Juventus}\n";
print "$ratings{Maldini}{Juventus}\n";
print "Inzaghi\n";
foreach (keys %{$ratings{Inzaghi}}) {

print " $_: $ratings{Inzaghi}{$_}\n";
}
6.5
6.5
Inzaghi
Udinese: 9.0
Juventus: 5.0
Lecce: 6.0

5/11/2010

4

Syntax summary

• Scalers:
$player

• Arrays:
@players Element: $players[1]@players, Element: $players[1]

• Hashes:
%players, Value: $players{Maldini}

Syntax summary

• Array of arrays:
@{$players[1]}, Element: $players[1][5]

• Hash of hashes:
%{$players{Maldini}}, Value: $players{Maldini}{Udinese}

• Hash of arrays:
@{$players{Maldini}}, Element: $players{Maldini}[5]

• Array of hashes:
%{$players[1]}, Value: $players[1]{Udinese}

Subroutines and modules

• Modularizing code makes programming easier
– allows shorter and more easily maintainable code
– allows reuse of code

• Subroutines are functions
• Modules are collections of subroutines

Subroutines
my $m1 = mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m1\n";

my $m2 = mean(3.3, 1.8, 1.9, 4.5, 10);
print "$m2\n";

sub mean {

• The default array @_ has
a similar function and
use as the default scalar
$_, but for subroutines

my @vector = @_;

my $sum = 0;
foreach (@vector) {

$sum += $_;
}
my $mean = $sum/@vector;

return $mean;
}
3.12
4.3

• return returns a scalar or
an array

Subroutine

Pass by value
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

Pass by reference
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my @vector = @{$_[0]};
my $n = $_[1];

foreach (@vector) {
$_ *= $n;

}
}
1 4 3 8 9

sub multiply_by_n {

my $vector = $_[0];
my $n = $_[1];

foreach (@$vector) {
$_ *= $n;

}
}
2 8 6 16 18

Modules

Module
(file name: Statistics.pm)
package Statistics;

sub mean {

my @vector = @_;

Program
use strict;
use warnings;

use Statistics;

my $sum = 0;
foreach (@vector) {

$sum += $_;
}
my $mean = $sum/@vector;

return $mean;
}

1;

my $m = Statistics::mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m\n";
3.12

5/11/2010

5

Acknowledgements

• Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

