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This lecture

• Go through Lab 1
• Introduction to Perl 2

– hashes
– data structures
– subroutines and modules
– references
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• The sigills $,@,% must always be used.
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Hashing

• Hash algorithms convert strings of  any length into 
reasonably small numbers; these numbers may be used 
to index an array.

• The same string must always give the same hash, but 
different strings can give the same hash. This is called 
a collision and is handled by Perl in a way that isa collision and is handled by Perl in a way that is 
invisible to you.

• Well-mixed hash-functions 
don't preserve the similarity 
of  their input. Hash functions 
do not sort their input.

Perl hashes
• Hashes hold multiple, unordered pairs of  keys and values. Each is a scalar.

• Hashes are written with a leading %, like: %favorite_color

• Hashes can be initialized by lists of  keys and values using the "Big Arrow" 
=> :
my %favorite_color = (dave => 'green', jim => 'blue', fred => 'red');

• Hashes are indexed by their keys.  Notice the curly brackets!
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
print "Daves favorite color is $fc{dave}\n";
Daves favorite color is green

• Each key in a hash must be unique! Reuse of  a key causes reassignment:
my %fc = (dave => 'green', dave => 'blue');
print "Daves fave color is $fc{dave}\n";
Daves favorite color is blue

Accessing Hashes and
Hash Slices

%days
• You access hashes by key in curly brackets:

my $fave = “Fri”;
my ($today,$tomorrow,$favorite) = ($days{Mon},$days{Tue},$days{$fave});
print "$today $tomorrow $favorite\n";
Monday Tuesday Friday

• You can access a slice of  a hash by a list:
my ($today,$tomorrow,$favorite) = @days{"Mon","Tue",$fave};
print "$today $tomorrow $favorite\n";
Monday Tuesday Friday

Iterating over hashes

• The keys function is the most common way to iterate over a 
hash:
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}}
jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

• The each function is less common, returning key-value pairs
while (my ($key, $value) = each %fc) {

print "$key\'s favorite color is $value\n";
}

Iterating over hashes

• Sorting by keys
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (sort keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}
dave's favorite color is green
fred's favorite color is redfred s favorite color is red
jim's favorite color is blue

• Sorting by value:
my %fc = (dave => 'green', jim => 'blue', fred => 'red');
foreach (sort {$fc{$a} cmp $fc{$b}} keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";
}
jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

Existence and definedness

Use exists to check for the presence of  a key in a hash, not defined

my %age;
$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

foreach my $thing ("Toddler", "Unborn", "Phantasm", "Relic") {
print "$thing: ";
print "Exists " if  exists $age{$thing};
print "Defined " if  defined $age{$thing};
print "\n";

}
Toddler: Exists Defined 
Unborn: Exists Defined 
Phantasm: Exists 
Relic: 
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Hashes as sets
• The uniqueness of  keys in hashes make hashes useful models 

of  sets, and you can easily do set operations on hashes:

my %hash1 = (a => 1, b => 1, d => 1);
my %hash2 = (a => 1, c => 1, d => 1);

my @common = ();
foreach (keys %hash1) {

push @common, $_ if  exists $hash2{$_};
}
print "@common\n";
a d

• Write pseudo-code that solves the same problem with arrays!

Nested data structures

• Scalars, arrays and hashes are not enough!  We want to nest 
data structures to create e.g. tables (arrays of  arrays).

• Perl cannot do arrays of  arrays, however, it can do arrays of  
references to arrays:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \@players;my $ref  = \@players;

• References are scalars that point to an address in memory
print "$ref\n";
ARRAY(0x23affd4)

• Accessing values from references is called dereferencing.
print "$ref->[2]\n";
Inzaghi
print "@$ref\n";
Maldini Giggs Inzaghi

References

• This:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref  = \@players;
is equivalent to this:
my $ref = ["Maldini" "Giggs" "Inzaghi"];my $ref   [ Maldini , Giggs , Inzaghi ];

• And this:
my %players = (Maldini => 1, Giggs => 1, Inzaghi => 1);
my $ref  = \%players;
is equivalent to this
my $ref  = {Maldini => 1, Giggs => 1, Inzaghi => 1};

• $ref  is called an anonymous array or hash.

Reading a table from file

my @tab;

open (T, "tab.txt");
while (<T>) {

chomp;
my @row = split /\s/;
push @tab \@row;push @tab, \@row;

}
close (T);

print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{$tab[2]}\n";
7.0
7.0
5.0 6.0 9.0

Reading a table from file
stored as a hash of arrays

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {
chomp;
my @row = split /\s/;
my $player = shift @row;y p y
$ratings{$player} = \@row;

}
close (T);

print "$ratings{Maldini}->[1]\n";
print "$ratings{Maldini}[1]\n";
print "@{$ratings{Inzaghi}}\n"; 
7.0
7.0
5.0 6.0 9.0

Reading a table from file
stored as a hash of hashes

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {

chomp;
my @row = split /\s/;
my $player = $row[0];
for (1..$#row) {

$ratings{$player}{$teams[$ ]} = $row[$ ];$ratings{$player}{$teams[$_]}  $row[$_];
}

}
close (T);

print "$ratings{Maldini}->{Juventus}\n";
print "$ratings{Maldini}{Juventus}\n";
print "Inzaghi\n";
foreach (keys %{$ratings{Inzaghi}}) {

print " $_: $ratings{Inzaghi}{$_}\n";
} 
6.5
6.5
Inzaghi
Udinese: 9.0
Juventus: 5.0
Lecce: 6.0
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Syntax summary

• Scalers:
$player

• Arrays:
@players Element: $players[1]@players, Element: $players[1] 

• Hashes:
%players, Value: $players{Maldini} 

Syntax summary

• Array of  arrays:
@{$players[1]}, Element: $players[1][5]

• Hash of  hashes: 
%{$players{Maldini}}, Value:  $players{Maldini}{Udinese}

• Hash of  arrays:
@{$players{Maldini}}, Element: $players{Maldini}[5]

• Array of  hashes: 
%{$players[1]}, Value: $players[1]{Udinese}

Subroutines and modules

• Modularizing code makes programming easier
– allows shorter and more easily maintainable code
– allows reuse of  code

• Subroutines are functions
• Modules are collections of  subroutines

Subroutines
my $m1 = mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m1\n";

my $m2 = mean(3.3, 1.8, 1.9, 4.5, 10);
print "$m2\n";

sub mean {

• The default array @_ has 
a similar function and 
use as the default scalar 
$_, but for subroutines

my @vector = @_;

my $sum = 0;
foreach (@vector) {

$sum += $_;
}
my $mean = $sum/@vector;

return $mean;
} 
3.12
4.3

• return returns a scalar or 
an array

Subroutine

Pass by value
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

Pass by reference
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my @vector = @{$_[0]};
my $n = $_[1];

foreach (@vector) {
$_ *= $n;

}
}
1 4 3 8 9

sub multiply_by_n {

my $vector = $_[0];
my $n = $_[1];

foreach (@$vector) {
$_ *= $n;

}
}
2 8 6 16 18

Modules

Module 
(file name: Statistics.pm)
package Statistics;

sub mean {

my @vector = @_;

Program
use strict;
use warnings;

use Statistics;

my $sum = 0;
foreach (@vector) {

$sum += $_;
}
my $mean = $sum/@vector;

return $mean;
}

1;

my $m = Statistics::mean(1.2, 1.5, 1.7, 4.5, 6.7);
print "$m\n";
3.12
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